History


Help on query formulation
first | previous | 1 21 41 61 | next | last

Result 1 to 20 of 72 total

Ideas for proofs in geometry. (Beweisideen in der Geometrie.) (German)
Mathematikinformation, No. 55, 24-41 (2011).
1
Steiner trees (also three-dimensional) in experiments. (Steinerbäume (auch dreidimensionale) im Experiment.) (German)
MNU, Math. Naturwiss. Unterr. 64, No. 5, 284-288 (2011).
Classification: M50 G90 N60 D40
2
There is always a way home: Walks on graphs from which fractals grow. (Es gibt immer einen Weg nach Hause: Spaziergänge auf Graphen, aus denen Fraktale wachsen.) (German)
Junge Wiss. 26, No. 89, 24-33 (2011).
Classification: K60 I90
3
The fourth dimension: Intersections of hypercubes and hyperplanes in multi-dimensional spaces. (Die vierte Dimension: Schnitte von Hyperkuben und Hyperebenen in mehrdimensionalen Räumen.) (German)
Junge Wiss. 26, No. 89, 52-59 (2011).
Classification: G40
4
Big Sierpinski-sponge model. (Großes Sierpinski-Schwamm-Modell.) (German)
MNU, Math. Naturwiss. Unterr. 64, No. 2, 85-87 (2011).
Classification: U63 G93 I93
5
Volumes of solid bodies built as origami objects. (Rauminhalt von Körpern, die als Origami-Objekte hergestellt wurden.) (German)
Mathematikunterricht 55, No. 6, 13-20 (2009).
Classification: G30 U60 A20
6
Slide-together models. (Steckmodelle.) (German)
Mathematikunterricht 55, No. 1, 38-47 (2009).
Classification: G40 U60
7
On the elementary geometry of the tetrahedron. (Zur Elementargeometrie des Tetraeders.) (German)
Mathematikunterricht 55, No. 1, 3-15 (2009).
Classification: G40 G70
8
What do tetrahedra and octahedra have to do with each other? (Was haben Tetraeder und Oktaeder miteinander zu tun?) (German)
MNU, Math. Naturwiss. Unterr. 61, No. 5, 279-281 (2008).
Classification: G30 G20
9
Pythagoras in three dimensions. (Pythagoras im Raum.) (German)
Monoid 28, No. 96, 37-38 (2008).
Classification: G40
10
Geometric phenomena. (Geometrische Phänomene.) (German)
Grundschule 39, No. 12, 12-21 (2007).
Classification: G22 D42 D82
11
From magic triangles to vector spaces to magic tetrahedrons. Von magischen Dreiecken zu Vektorrauemen zu magischen Tetraedern. (English)
Math. Gaz. (1992) v. 76(476) p. 257-260. CODEN: MAGAAS [ISSN 0025-5572]
Classification: H64 A24 G44
12
On the triangle and the tetrahedron. Sur le triangle et le tetraedre. Ueber Dreieck und Tetraeder. (French)
Bull. - APMEP (Paris). (Dec 1991) v. 70(381) p. 616-622. [ISSN 0240-5709]
Classification: G45
13
Introduction of regular polygons. Einfuehrung der regelmaessigen Polyeder. (German)
Math. Sch. (Dec 1991) v. 29(12) p. 838-840. CODEN: MKSCAS [ISSN 0465-3750]
Classification: G43 D83
14
Cosine rule for a polyhedron. Der Kosinussatz fuer ein Polyeder. (English)
Aust. Sr. Math. J. (1991) v. 5(2) p. 106-110. [ISSN 0819-4564]
Classification: G40 G60 G70 H70
15
On Pythagorean tetrahedra. Ueber pythagoreische Tetraeder. (German)
PM, Prax. Math. (Dec 1991) v. 33(6) p. 269-273. CODEN: PRMAA6 [ISSN 0032-7042]
Classification: R23 R24 G43 G44
16
On the geometry of generalized tetrahedrons. Zur Geometrie der verallgemeinerten Tetraeder. (German)
PM, Prax. Math. (Dec 1991) v. 33(6) p. 261-262. CODEN: PRMAA6 [ISSN 0032-7042]
Classification: G44
17
The spheres of the tetrahedron. Die Kugeln des Tetraeders. (German)
PM, Prax. Math. (Apr 1991) v. 33(2) p. 65-67. CODEN: PRMAA6 [ISSN 0032-7042]
Classification: G40
18
A Fractal Excursion. Exkursion in die Welt der Fraktale. (English)
Math. Teacher. (Apr 1991) v. 84(4) p. 265-75. [ISSN 0025-5769]
Classification: G44
19
A tetrahedral cosine rule. Eine Formulierung des Kosinussatzes fuer Tetraeder. (English)
Aust. Sr. Math. J. (1991) v. 5(1) p. 53-56. [ISSN 0819-4564]
Classification: G60 G70
20
first | previous | 1 21 41 61 | next | last

Result 1 to 20 of 72 total

Valid XHTML 1.0 Transitional Valid CSS!