History
1
1183


Help on query formulation

Result 61 to 80 of 1183 total

Traveling waves and Taylor series: do they have something in common? (English)
Coll. Math. J. 45, No. 1, 29-32 (2014).
Classification: I35 I45 M55
61
Proof without words: an infinite series using golden triangles. (English)
Coll. Math. J. 45, No. 2, 120 (2014).
Classification: I30 F60 G40
62
Finding formulae for summing the general power series of positive integers. (English)
Math. Teach. (Derby) 238, 17-21 (2014).
Classification: I30
63
An acute case of discontinuity. (English)
Coll. Math. J. 45, No. 1, 22-28 (2014).
Classification: I25 I35
64
Squares, clocks and primes. (English)
Math. Teach. (Derby) 241, 8-9 (2014).
Classification: F60 I30
65
Stationary stochastic processes for scientists and engineers. (English)
Boca Raton, FL: CRC Press (ISBN 978-1-4665-8618-5/hbk). xvi, 314~p. (2014).
Classification: K65 Reviewer: Miroslav M. Ristić (Niš)
66
Numerically integrating irregularly-spaced $(x,y)$ data. (English)
Math. Enthus. 11, No. 3, 643-648 (2014).
Classification: N40
67
Pre-university students’ personal relationship with the visualitation of series of real numbers. (English)
Oesterle, Susan (ed.) et al., Proceedings of the 38th conference of the International Group for the Psychology of Mathematics Education “Mathematics education at the edge", PME 38 held jointly with the 36th conference of PME-NA, Vancouver, Canada, July 15‒20, 2014, Vol. 3. [s. l.]: International Group for the Psychology of Mathematics Education (ISBN 978-0-86491-360-9/set; 978-0-86491-363-0/v.3). 201-208 (2014).
Classification: I35
68
Elementary proofs of the identities $\mathrm{csc}^2 θ= \frac{1}{θ^2} +\sum_{k=1}^{\infty}(\frac{1}{(kπ+ θ)^2} + \frac{1}{(kπ- θ)^2})$, $\cot θ= \frac{1}θ-\sum_{k=1}^{\infty} \frac{2θ}{k^2π^2-θ^2}$ and $\sinθ= θ\prod_{k=1}^{\infty}(1-\frac{θ^2}{k^2π^2})$. (English)
Int. J. Math. Educ. Sci. Technol. 45, No. 7, 1108-1113 (2014).
Classification: I30 I20
69
The development of calculus in the Kerala School. (English)
Math. Enthus. 11, No. 3, 493-512 (2014).
Classification: A30 G60 I20 I30 N50
70
Creating a project on difference equations with primary sources: challenges and opportunities. (English)
PRIMUS, Probl. Resour. Issues Math. Undergrad. Stud. 24, No. 8, 764-773 (2014).
Classification: D35 I75 A30
71
Magic mathematics. Two math-magic number tricks. (Zauberhafte Mathematik. Zwei mathemagische Zahlenkunststücke.) (German)
PM Prax. Math. Sch. 56, No. 59, 7-12 (2014).
Classification: A20 F40 F60
72
Subdivisions for definite integrals based on uniform areas. (English)
Math. Comput. Educ. 48, No. 3, 259-267 (2014).
Classification: N40 I50
73
A dissection proof of Leibniz’s series for $π/4$. (English)
Math. Mag. 87, No. 2, 145-150 (2014).
Classification: I35
74
Mathematical analysis fundamentals. (English)
Amsterdam: Elsevier (ISBN 978-0-12-801001-3/hbk). xiii, 348~p. (2014).
Classification: I15 Reviewer: Petr Gurka (Praha)
75
Introduction of the differential transform method to solve differential equations at undergraduate level. (English)
Int. J. Math. Educ. Sci. Technol. 45, No. 5, 781-794 (2014).
Classification: N45 I75
76
The doomed fly: a kinematic brain-teaser. (Die todgeweihte Fliege: eine kinematische Denkaufgabe.) (German)
Wurzel 48, No. 7, 164-169 (2014).
Classification: M50 I30 D50
77
Brilliant ideas of great mathematicians. V. Studies on the total values of dice. (Geniale Ideen großer Mathematiker. V. Untersuchungen zu Augensummen.) (German)
MNU, Math. Naturwiss. Unterr. 67, No. 5, 270-278 (2014).
Classification: K20 K60
78
Fourier transform and its application. (English)
Šedivý, Ondrej (ed.) et al., Acta Mathematica 17. Proceedings of the 12th Nitra mathematics conference, Department of Mathematics, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, Slovakia, June 19, 2014. Nitra: Constantine The Philosopher University in Nitra, Faculty of Natural Sciences (ISBN 978-80-558-0613-6). Prírodovedec 578, 155-160 (2014).
Classification: I55 I85 M55
79
An elementary calculus method for evaluating $\sum_{k=1}^{\infty}\frac{(-1)^{k-1}}{2k-1}$, $\sum_{k=1}^{\infty}\frac{1}{k^2}$, $\sum_{k=1}^{\infty}\frac{(-1)^{k-1}}{(2k-1)^3}$, $\sum_{k=1}^{\infty}\frac{1}{k^4}$,\dots. (English)
Int. J. Math. Educ. Sci. Technol. 45, No. 6, 928-932 (2014).
Classification: I35 I45 I55
80

Result 61 to 80 of 1183 total

Valid XHTML 1.0 Transitional Valid CSS!