History
1
2649


Help on query formulation
first | previous | 1 21 41 61 81 101 | next | last

Result 1 to 20 of 2649 total

How to study for a mathematics degree. Translated from the English by Berhnhard Gerl. (Wie man erfolgreich Mathematik studiert. Besonderheiten eines nicht-trivialen Studiengangs.) (German)
Heidelberg: Springer Spektrum (ISBN 978-3-662-50384-3/pbk; 978-3-662-50385-0/ebook). xviii, 272~p. (2017).
Classification: A15 E45 E55
1
Constraints and affordances in bringing about shifts in practice towards developing reasoning in mathematics: a case study. (English)
Kaur, Berinderjeet (ed.) et al., Professional development of mathematics teachers. An Asian perspective. Singapore: Springer (ISBN 978-981-10-2596-9/hbk; 978-981-10-2598-3/ebook). Mathematics Education ‒ An Asian Perspective, 121-140 (2017).
Classification: D39 E59 C29
2
Overcoming the algebra barrier: being particular about the general, and generally looking beyond the particular, in homage to Mary Boole. (English)
Stewart, Sepideh (ed.), And the rest is just algebra. Cham: Springer (ISBN 978-3-319-45052-0/hbk; 978-3-319-45053-7/ebook). 97-117 (2017).
Classification: C30 H20 H30 E50
3
Formative assessment of creativity in undergraduate mathematics: using a creativity-in-progress rubric (CPR) on proving. (English)
Leikin, Roza (ed.) et al., Creativity and giftedness. Interdisciplinary perspectives from mathematics and beyond. Cham: Springer (ISBN 978-3-319-38838-0/hbk; 978-3-319-38840-3/ebook). Advances in Mathematics Education, 23-46 (2017).
Classification: D65 E55 C45
4
What can you infer from this example? Applications of online, rich-media tasks for enhancing pre-service teachers’ knowledge of the roles of examples in proving. (English)
Leung, Allen (ed.) et al., Digital technologies in designing mathematics education tasks. Potential and pitfalls. Cham: Springer (ISBN 978-3-319-43421-6/hbk; 978-3-319-43423-0/ebook). Mathematics Education in the Digital Era 8, 215-235 (2017).
Classification: U79 D49 D59 E59
5
Mathematical problem solving and proving. An expedition to mathematics. (Mathematisches Problemlösen und Beweisen. Eine Entdeckungsreise in die Mathematik.) 2nd revised and enlarged edition. (German)
Springer Studium Mathematik ‒ Bachelor. Heidelberg: Springer Spektrum (ISBN 978-3-658-14764-8/pbk; 978-3-658-14765-5/ebook). xiii, 321~p. (2017).
Classification: D50 E50
6
Reasoning about variables in 11 to 18 year olds: informal, schooled and formal expression in learning about functions. (English)
Math. Educ. Res. J. 28, No. 3, 379-404 (2016).
Classification: I20 E50
7
Doing the math: supporting student justifications. (English)
Math. Teach. Middle Sch. 21, No. 7, 416-423 (2016).
Classification: H23 E53
8
Proofs without words with geometric representations: a trigger to self-efficacy and mathematical argumentation. (English)
Far East J. Math. Educ. 16, No. 1, 21-56 (2016).
Classification: G40 E50
9
Zig-zagging in geometrical reasoning in technological collaborative environments: a mathematical working space-framed study concerning cognition and affect. (English)
ZDM, Math. Educ. 48, No. 6, 909-924 (2016).
Classification: G40 U70 E50 C70
10
Patterns and repeating ornaments in language-sensible instruction. Detecting and justifying patterns and structures. (Muster und Bandornamente im sprachsensiblen Unterricht. Erkennen, Beschreiben und Begründen von Mustern und Strukturen.) (German)
Grundschulmagazin 84, No. 1, 12-17 (2016).
Classification: G20 E50 C50
11
Graduate teaching assistants’ enactment of reasoning-and-proving tasks in a content course for elementary teachers. (English)
J. Res. Math. Educ. 47, No. 4, 372-419 (2016).
Classification: E59 D49
12
An analysis of the essential difficulties with mathematical induction: in the case of prospective teachers. (English)
Adams, G. (ed.), Proceedings of the British Society for Research into Learning Mathematics (BSRLM). Vol. 35, No. 3. Proceedings of the day conference, University of Reading, UK, November 7, 2015. London: British Society for Research into Learning Mathematics (BSRLM). 102-107 (2016).
Classification: E59 D79
13
Student conceptions of what it means to base a proof on an informal argument. (English)
Int. J. Res. Undergrad. Math. Educ. 2, No. 3, 318-337 (2016).
Classification: E55 C35
14
Empowering students’ proof learning through communal engagement. (English)
Math. Teach. (Reston) 109, No. 8, 618-624 (2016).
Classification: E50
15
Promoting mathematical argumentation. (English)
Teach. Child. Math. 22, No. 7, 412-419 (2016).
Classification: E50
16
On the analysis of indirect proofs: contradiction and contraposition. (English)
Aust. Sr. Math. J. 30, No. 1, 55-64 (2016).
Classification: E50
17
Plato on the foundations of modern theorem provers. (English)
Math. Enthus. 13, No. 3, 303-314 (2016).
Classification: E50 A30 R40
18
Definitions and their application in writing proofs on divisibility of integers. (English)
Far East J. Math. Educ. 16, No. 1, 111-133 (2016).
Classification: E50 F60 D70
19
The concept of proof in the light of mathematical work. (English)
ZDM, Math. Educ. 48, No. 6, 843-859 (2016).
Classification: E50 D20 C70
20
first | previous | 1 21 41 61 81 101 | next | last

Result 1 to 20 of 2649 total

Valid XHTML 1.0 Transitional Valid CSS!