History


Help on query formulation
first | previous | 1 21 41 | next | last

Result 1 to 20 of 41 total

A matrix representation of the polynomials for the sums of powers. (Eine Matrizendarstellung der Potenzsummenpolynome.) (German)
PM Prax. Math. Sch. 45, No. 1, 34 (2003).
Classification: H24
1
Pascal’s triangle and polynomials of sums of powers. (Pascalsches Dreieck und Potenzsummenpolynome.) (German)
MNU, Math. Naturwiss. Unterr. 54, No. 3, 146-148 (2001).
Classification: H24
2
The probability of "6 two times in series" when casting dices n times. (Wie wahrscheinlich sind zwei Sechsen hintereinander beim mehrfachen Wuerfeln?) (German)
PM Prax. Math. Sch. 43, No. 2, 93-94 (2001).
Classification: K50
3
A random walk on an n-dimensional cube. (Eine Irrfahrt auf einem n-dimensionalen Würfel.) (German)
MNU, Math. Naturwiss. Unterr. 52, No. 3, 144-146 (1999).
Classification: K54
4
Knight’s tour on the nxn board. (Eine Springerirrfahrt. T. 2.) (German)
Prax. Math. 41, No. 3, 129-130 (1999).
Classification: H60
5
Curve sketching and sums of powers. (Zur Kurvendiskussion der Potenzsummenpolynome.) (German)
Elem. Math. 53, No. 3, 119-125 (1998).
Classification: I44
6
Computer calculations of power sum polynomials. (Computerberechnung der Potenzsummenpolynome.) (German)
MNU, Math. Naturwiss. Unterr. 51, No. 5, 277-278 (1998).
Classification: H20
7
The prime number spiral of S. Ulam. (Die Primzahlspirale von S. Ulam.) (German)
Prax. Math. 39, No. 6, 269-272 (1997).
Classification: I30
8
Some geometrical and didactical reflections on a popular extreme value problem. (Elementargeometrische und didaktische Betrachtungen zu einer beliebten Extremwertaufgabe.) (German)
MNU, Math. Naturwiss. Unterr. 49, No. 7, 407-408 (1996).
Classification: G40
9
How many decimal places has factorial n? (Wieviele Dezimalstellen hat n-Fakultät?) (German)
Didakt. Math. 23, No. 2, 93-98 (1995).
Classification: N50
10
On series of prime number reciprocals. (Zur Reihe der Primzahlreziproken.) (German)
Elem. Math. 50, No. 4, 164-166 (1995).
Classification: F64
11
An antiderivative rule. (Eine Stammfunktionsregel.) (German)
Prax. Math. 35, No. 1, 16-17 (1993).
Classification: I44
12
How exact is the Newton method. Wie genau ist das Newton-Verfahren. (German)
Didakt. Math. (1992) v. 20(4) p. 286-297. [ISSN 0343-5334]
Classification: N34 D44 R24
13
To the problem of the ’grazing goat’. Zum Problem der ’Weidenden Ziege’. (German)
PM, Prax. Math. (Jun 1991) v. 33(3) p. 97-100. CODEN: PRMAA6 [ISSN 0032-7042]
Classification: I50
14
On Pythagorean tetrahedra. Ueber pythagoreische Tetraeder. (German)
PM, Prax. Math. (Dec 1991) v. 33(6) p. 269-273. CODEN: PRMAA6 [ISSN 0032-7042]
Classification: R23 R24 G43 G44
15
On the Jensen inequality. Zur Jensenschen Ungleichung. (German)
PM, Prax. Math. (Apr 1991) v. 33(2) p. 71-73. CODEN: PRMAA6 [ISSN 0032-7042]
Classification: I40 I70
16
Where is the mean value in the theorem of the mean value. Wo steckt der Mittelwert im Mittelwertsatz. (German)
Didakt. Math. (1991) v. 19(3) p. 221-226. [ISSN 0343-5334]
Classification: I44
17
The probability of a common winning number in several lotto games. Die Wahrscheinlichkeit einer gemeinsamen Gewinnzahl bei mehreren Lottoziehungen. (German)
PM, Prax. Math. (Feb 1991) v. 33(1) p. 22-23. CODEN: PRMAA6 [ISSN 0032-7042]
Classification: K50
18
Polynomial functions of third degree with integer zeros and extremas. Ganzrationale Funktionen dritten Grades mit ganzzahligen Nullstellen und Extremstellen. (German)
Prax. Math. (15 Oct 1989) v. 31(7) p. 397-402. [ISSN 0032-7042]
Classification: I24 I44 F64
19
Lotto draws with a large gap between the winning numbers. Lottoziehungen mit einer grossen Luecke zwischen den Gewinnzahlen. (German)
Prax. Math. (15 Jul 1989) v. 31(5) p. 297-300. [ISSN 0032-7042]
Classification: K54
20
first | previous | 1 21 41 | next | last

Result 1 to 20 of 41 total

Valid XHTML 1.0 Transitional Valid CSS!