History


Help on query formulation
first | previous | 1 | next | last

Result 1 to 14 of 14 total

The integrating factors of an exact differential equation. (English)
Math. Mag. 86, No. 3, 220-226 (2013).
Classification: I75
1
Orthocentric simplices as the true generalizations of triangles. (English)
Math. Intell. 35, No. 2, 16-28 (2013).
Classification: G40 G60 Reviewer: Ana Soledad MeroƱo Moreno (Madrid)
2
Equicevian points on the altitudes of a triangle. (English)
Elem. Math. 67, No. 4, 187-195 (2012).
Classification: G45 Reviewer: Antonio M. Oller (Zaragoza)
3
Another morsel of Honsberger. (English)
Math. Mag. 83, No. 4, 279-283 (2010).
Classification: G45 G65 E55
4
Stronger forms of the Steiner-Lehmus theorem. (English)
Forum Geom. 8, 157-161 (2008).
Classification: G70
5
Another variation on the Steiner-Lehmus theme. (English)
Forum Geom. 8, 131-140 (2008).
Classification: G70 G40
6
A method for establishing trigonometric inequalities involving the cotangents of the angles of a triangle. (English)
J. Geom. Graph. 12, No. 1, 11-21 (2008).
Classification: G65 Reviewer: Georgi Hristov Georgiev (Shumen)
7
Coincidence of centers for scalene triangles. (English)
Forum Geom. 7, 137-146 (2007).
Classification: G45
8
The arbitrariness of the Cevian triangle. (English)
Am. Math. Mon. 113, No. 5, 443-447 (2006).
Classification: G45 Reviewer: Georgi Hristov Georgiev (Shumen)
9
Triangle centers with linear intercepts and linear subangles. (English)
Forum Geom. 5, 33-36 (2005).
Classification: G40 G70 Reviewer: Erhard Quaisser (Potsdam)]
10
In search of more triangle centres. A source of classroom projects in Euclidean geometry. (English)
Int. J. Math. Educ. Sci. Technol. 36, No. 8, 889-912 (2005).
Classification: G40 G70
11
The measure of solid angles in n-dimensional Euclidean space. (English)
Int. J. Math. Educ. Sci. Technol. 33, No. 5, 725-729 (2002).
Classification: G75
12
Equifacial tetrahedra. (English)
Int. J. Math. Educ. Sci. Technol. 32, No. 4, 501-508 (2001).
Classification: G40
13
Triangle centres: some questions in Euclidean geometry. (English)
Int. J. Math. Educ. Sci. Technol. 32, No. 1, 21-36 (2001).
Classification: G40
14
first | previous | 1 | next | last

Result 1 to 14 of 14 total

Valid XHTML 1.0 Transitional Valid CSS!