History


Help on query formulation
Undergraduate mathematics majors’ writing performance producing proofs and counterexamples about continuous functions. (English)
J. Math. Behav. 28, No. 1, 68-77 (2009).
Summary: In advanced mathematical thinking, proving and refuting are crucial abilities to demonstrate whether and why a proposition is true or false. Learning proofs and counterexamples within the domain of continuous functions is important because students encounter continuous functions in many mathematics courses. Recently, a growing number of studies have provided evidence that students have difficulty with mathematical proofs. Few of these research studies, however, have focused on undergraduates’ abilities to produce proofs and counterexamples in the domain of continuous functions. The goal of this study is to contribute to research on student productions of proofs and counterexamples and to identify their abilities and mathematical understandings. The findings suggest more attention should be paid to teaching and learning proofs and counterexamples, as participants showed difficulty in writing these statements. More importantly, the analysis provides insight into the design of curriculum and instruction that may improve undergraduates’ learning in advanced mathematics courses.
Classification: I25 E55
Valid XHTML 1.0 Transitional Valid CSS!