id: 06351064
dt: b
an: 2015b.00482
au: Arnold, V. I.
ti: Mathematical understanding of nature. Essays on amazing physical phenomena
and their understanding by mathematicians. Translated from the Russian
by Alexei Sossinsky and Olga Sipacheva.
so: Providence, RI: American Mathematical Society (AMS) (ISBN
978-1-4704-1701-7/pbk). xiv, 167~p. (2014).
py: 2014
pu: Providence, RI: American Mathematical Society (AMS)
la: EN
cc: E25 M55
ut: applied mathematics; mathematical physics; problem solving
ci:
li:
ab: This is an English translation of the book published in Russian in 2011. As
the late Professor Arnold wrote in the preface to the Russian edition,
“the 39 essays collected below have the same goal: to teach the
reader not only to multiply large numbers (which sometimes also has to
be done), but to guess about unexpected connections between seemingly
unrelated phenomena and facts, at times coming from different branches
of the natural and other sciences. Examples teach no less than rules,
and errors, more than correct but abstruse proofs. Looking at the
pictures in this book, the reader will understand more than learning by
rote dozens of axioms (even together with their consequences about what
sea the Volga river falls into and what horses eat)." Most essays in
the book are quite short, and their level of difficulty varies
significantly ‒ some require only knowledge of a high school
mathematics and some may be viewed as a serious challenge even for an
experience mathematician. As most texts written by Arnold, the book
under review is a quite demanding but very stimulating and inspiring
reading featuring original author’s illustrations.
rv: Svitlana P. Rogovchenko (Kristiansand)