
06515112
j
2016a.00802
Bourb\u{a}cu\c{t}, Nicolae
Monotony and convergence of recursive sequences. (Monotonia \c{s}i convergen\c{t}a unor \c{s}iruri recurente.)
Gaz. Mat., Ser. B 119, No. 12, 552557 (2014).
2014
Romanian Mathematical Society (Societatea de \c{S}tiin\c{t}e Matematice din Rom\^ania), Bucharest
RO
I30
recursive sequences
iterations
monotony
convergence
fixed points
Summary: Given a realvalued function, we consider three real sequences defined as convex combinations. For a increasing function we infer that the sequences are monotonic, while for a continuous function we have convergent sequences. Some applications are presented.