\input zb-basic \input zb-matheduc \iteman{ZMATH 2003f.05000} \itemau{Hilton, Peter; Pedersen, Jean; Walser, Hans} \itemti{The art of mathematics. From hands-on geometry to number theory. (Die Kunst der Mathematik. Von der handgreiflichen Geometrie zur Zahlentheorie.)} \itemso{,. 235 p. (2003).} \itemab Im ersten Kapitel des Buches wird ausf\"uhrlich beschrieben, wie regul\"are Polygone gefaltet werden k\"onnen. Kapitel 2 besch\"aftigt sich mit der Mathematik des Papierfaltens: Winkel, Approximation und Konvergenz, einfacher Faltprozess. Kapitel 3 bis 11 f\"uhren danach in das Falten einer Vielzahl verschiedener Polyeder und Polygone ein, u. a. Flexagone, Doppelpyramiden, pop-up Polyeder, Dodekaeder, Flechtmodelle der platonischen K\"orper, Flechtmodelle umst\"ulpbarer Ringe, Kollapsoide. \itemrv{~} \itemab From the review of the original English version: This book will help the reader to really DO geometry! The reader is expected to 1. build from easily accessible materials some intriguing three-dimensional shapes; 2. find out why these shapes are fascinating, both esthetically and mathematically; 3. be introduced to the symmetry of the shapes and discover relationships between the vertices, edges, and faces of your polyhedral models. Some topics: 1. Foldins of your polyhedral models. Some topics: 1. Folding Regular Polygons. 2. The Mathematics of Paper Folding. 3. Constructing Flexagons. 4. Introduction to Polyhedra. 5. Constructing Dg Dipyramids from a Single Straight Strip. 6. Constructing Pop-up Polyhedra, Dodecahedra, and Collapsoids. 7. Braiding Platonic Solids and Rotating Rings. \itemrv{~} \itemcc{G40 G50 U60} \itemut{} \itemli{} \end