\input zb-basic
\input zb-matheduc
\iteman{ZMATH 2013e.00610}
\itemau{Anghel, Vinicius Nicolae Petre}
\itemti{A use of symmetry: generalization of an integral identity found by M. L. Glasser.}
\itemso{Am. Math. Mon. 120, No. 1, 62-69 (2013).}
\itemab
Summary: The integral identity found by {\it M. L. Glasser\/} [J. Phys. A, Math. Theor. 44, No. 22, Article ID 225202, 5 p. (2011; Zbl 1252.33012)] is generalized using the permutation symmetry of coordinates of an $n$-spherical surface simplex. The first calculation technique is simple to apply, but the second technique allows further generalization of M. L. Glasser's identity. Analogous results are discussed for the $n$-hemispherical surface of the unit $n$-sphere and for the entire surface of the $n$-sphere. The $n$-sphere surface result is used to generalize M. L. Glasser's solution to a problem proposed by {\it J. R. Bottiger\/} and {\it D. K. Cohoon\/} [``A normalization constant", SIAM Review 29, 302--303 (1987)].
\itemrv{~}
\itemcc{I55}
\itemut{integral identity; Glasser's identity; $n$-hemispherical surface}
\itemli{doi:10.4169/amer.math.monthly.120.01.062}
\end