
06619298
j
2016e.00180
Maciejewski, Wes
Merchant, Sandra
Mathematical tasks, study approaches, and course grades in undergraduate mathematics: a yearbyyear analysis.
Int. J. Math. Educ. Sci. Technol. 47, No. 3, 373387 (2016).
2016
Taylor \& Francis, Abingdon, Oxfordshire
EN
C35
D55
undergraduate mathematics education
student approaches to learning theory
study process questionnaire
conceptions of mathematics questionnaire
doi:10.1080/0020739X.2015.1072881
Summary: Students approach learning in different ways, depending on the experienced learning situation. A deep approach is geared toward longterm retention and conceptual change while a surface approach focuses on quickly acquiring knowledge for immediate use. These approaches ultimately affect the students' academic outcomes. This study takes a crosssectional look at the approaches to learning used by students from courses across all four years of undergraduate mathematics and analyses how these relate to the students' grades. We find that deep learning correlates with grade in the first year and not in the upper years. Surficial learning has no correlation with grades in the first year and a strong negative correlation with grades in the upper years. Using Bloom's taxonomy, we argue that the nature of the tasks given to students is fundamentally different in lower and upper year courses. We find that firstyear courses emphasize tasks that require only lowlevel cognitive processes. Upper year courses require higher level processes but, surprisingly, have a simultaneous greater emphasis on recall and understanding. These observations explain the differences in correlations between approaches to learning and course grades. We conclude with some concerns about the disconnect between first year and upper year mathematics courses and the effect this may have on students.