
02305419
j
1995a.00375
Webb, M.
Miller, D.
Parallel curves at infinity.
Pi Mu Epsilon J. 10, No. 1, 3941 (1994).
1994
Worcester Polytechnic Institute (WPI), Mathematical Sciences, Worcester, MA
EN
I65
rparallel curves
Let $\beta{}$(t) = (x(t), y(t)) denote a smooth curve in $R^2$. We will say that a curve $\beta_r$ is rparallel to $\beta{}$ if $\beta_r(t)=\beta(t)+rN(t)$ where $N(t)=(y\rq(t),x\rq(t))/\sqrt{(x\rq(t))^2+(y\rq(t))^2}$. In this note we will show that at infinity all rparallel curves are circles. (orig.)