×

Local stability analysis of continuous-time Takagi-Sugeno fuzzy systems: a fuzzy Lyapunov function approach. (English) Zbl 1321.93055

Summary: This paper proposes a strategy to estimate invariant subsets of the domain of attraction (DA) for asymptotically stable zero equilibrium points of continuous-time Takagi-Sugeno (T-S) fuzzy systems. Specifically, by using Lyapunov’s stability theory and the linear matrix inequality (LMI) technique, sufficient conditions for proving the local stability are provided in terms of single-parameter minimization problems subject to LMI constraints or eigenvalue problems, which are solvable via convex optimizations. The fuzzy Lyapunov functions (FLFs), expressed by the so-called multi-dimensional fuzzy summations, are employed to characterize invariant subsets of the DA as sublevel sets of the FLFs. To compute a larger inner estimate of the DA, an iterative LMI algorithm is also developed. Finally, illustrative examples show the efficacy of the approach.

MSC:

93D20 Asymptotic stability in control theory
34A07 Fuzzy ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bernal, M.; Guerra, T. M.; Kruszewski, A., A membership-function-dependent approach for stability analysis and controller synthesis of Takagi-Sugeno models, Fuzzy Sets and Systems, 160, 19, 2776-2795 (2009) · Zbl 1176.93042
[2] Bernal, M.; Guerra, T. M., Generalized nonquadratic stability of continuous-time Takagi-Sugeno models, IEEE Transactions on Fuzzy Systems, 18, 4, 815-822 (2010)
[4] Bernal, M.; Sala, A.; Jaadari, A.; Guerra, T. M., Stability analysis of polynomial fuzzy models via polynomial fuzzy Lyapunov functions, Fuzzy Sets and Systems, 185, 1, 5-14 (2011) · Zbl 1238.93086
[5] Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V., Linear Matrix Inequalities in Systems and Control Theory (1994), SIAM: SIAM Philadelphia · Zbl 0816.93004
[6] Chakraborty, A.; Seiler, P.; Balas, G. J., Nonlinear region of attraction analysis for flight control verification and validation, Control Engineering Practice, 19, 4, 335-345 (2011)
[7] Chen, Y. J.; Ohtake, H.; Tanaka, K.; Wang, W. J.; Wang, H. O., Relaxed stabilization criterion for T-S fuzzy systems by minimum-type piecewise Lyapunov function based switching fuzzy controller, IEEE Transactions on Fuzzy Systems, 20, 6, 1166-1173 (2012)
[8] Chesi, G., Estimating the domain of attraction for non-polynomial systems via LMI optimizations, Automatica, 45, 6, 1536-1541 (2009) · Zbl 1166.93355
[9] Ding, B. C.; Sun, H. X.; Yang, P., Further studies on LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno’s form, Automatica, 42, 3, 503-508 (2006) · Zbl 1123.93061
[10] Ding, B. C., Homogeneous polynomially nonquadratic stabilization of discrete-time Takagi-Sugeno systems via nonparallel distributed compensation law, IEEE Transactions on Fuzzy Systems, 18, 5, 994-1000 (2010)
[11] Fang, C. H.; Liu, Y. S.; Kau, S. W.; Hong, L.; Lee, C. H., A new LMI-based approach to relaxed quadratic stabilization of T-S fuzzy control systems, IEEE Transactions on Fuzzy Systems, 14, 3, 386-397 (2006)
[12] Feng, G., Controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions, IEEE Transactions on Fuzzy Systems, 11, 5, 605-612 (2003)
[14] Guerra, T. M.; Kruszewski, A.; Bernal, M., Control law proposition for the stabilization of discrete Takagi-Sugeno models, IEEE Transactions on Fuzzy Systems, 17, 3, 724-731 (2009)
[17] Guerra, T. M.; Vermeiren, L., LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno’s form, Automatica, 40, 5, 823-829 (2004) · Zbl 1050.93048
[18] Huang, C.-P., Model based fuzzy control with affine T-S delayed models applied to nonlinear systems, International Journal of Innovative Computing, Information and Control, 8, 5, 2979-2993 (2012)
[19] Zhang, H.; Xie, X., Relaxed stability conditions for continuous-time T-S fuzzy-control systems via augmented multi-indexed matrix approach, IEEE Transactions on Fuzzy Systems, 199, 3, 478-492 (2011)
[21] Johansson, J.; Rantzer, A.; Arzen, M., Piecewise quadratic stability of fuzzy systems, IEEE Transactions on Fuzzy Systems, 7, 6, 713-722 (1999)
[22] Khalil, H. K., Nonlinear Systems (2002), Prentice-Hall: Prentice-Hall Upper Saddle River, NJ
[23] Kim, E.; Lee, H., New approaches to relaxed quadratic stability condition of fuzzy control systems, IEEE Transactions on Fuzzy Systems, 8, 5, 523-534 (2000)
[24] Kruszewski, A.; Wang, R.; Guerra, T. M., Nonquadratic stabilization conditions for a class of uncertain nonlinear discrete time TS fuzzy models: a new approach, IEEE Transactions on Automatic Control, 53, 2, 606-611 (2008) · Zbl 1367.93333
[25] Kruszewski, A.; Sala, A.; Guerra, T. M.; Ariño, C. M., A triangulation approach to asymptotically exact conditions for fuzzy summations, IEEE Transactios on Fuzzy Systems, 17, 5, 985-994 (2009)
[26] Lam, H. K., Polynomial fuzzy-model-based control systems: stability analysis via piecewise-linear membership functions, IEEE Transactions on Fuzzy Systems, 19, 3, 588-593 (2011)
[27] Lam, H. K., Stabilization of nonlinear systems using sampled-data output-feedback fuzzy controller based on polynomial-fuzzy-model-based control approach, IEEE Transactions on Systems, Man, and Cybernetics, 42, 1, 258-267 (2012)
[28] Lam, H. K.; Lauber, J., Membership-function-dependent stability analysis of fuzzy-model-based control systems using fuzzy Lyapunov functions, Information Sciences, 232, 20, 253-266 (2013) · Zbl 1293.93631
[29] Lee, D. H.; Park, J. B.; Joo, Y. H., Improvement on nonquadratic stabilization of discrete-time Takagi-Sugeno fuzzy systems: Multiple-parameterization approach, IEEE Transactions on Fuzzy Systems, 18, 2, 425-429 (2010)
[30] Lee, D. H.; Park, J. B.; Joo, Y. H., Further theoretical justification of the \(k\)-samples variation approach for discrete-time Takagi-Sugeno fuzzy systems, IEEE Transactions on Fuzzy Systems, 19, 3, 594-597 (2011)
[31] Lee, D. H.; Park, J. B.; Joo, Y. H., Approaches to extended non-quadratic stability and stabilization conditions for discrete-time Takagi-Sugeno fuzzy systems, Automatica, 47, 3, 534-538 (2011) · Zbl 1216.93071
[32] Lee, D. H.; Park, J. B.; Joo, Y. H., A fuzzy Lyapunov function approach to estimating the domain of attraction for continuous-time Takagi-Sugeno fuzzy systems, Information Sciences, 185, 1, 230-248 (2012) · Zbl 1241.93030
[34] Lee, H. J.; Park, J. B.; Chen, G., Robust fuzzy control of nonlinear systems with parametric uncertainties, IEEE Transactions on Fuzzy Systems, 9, 2, 369-379 (2001)
[35] Liu, X.; Zhang, Q., Approaches to quadratic stability condisitons and \(H_∞\) control designs for T-S fuzzy systems, IEEE Transactions on Fuzzy Systems, 11, 6, 830-839 (2003)
[36] Liu, X.; Zhang, Q., New approaches to \(H_∞\) controller designs based on fuzzy observers for T-S fuzzy systems via LMI, Automatica, 39, 9, 1571-1582 (2003) · Zbl 1029.93042
[38] Mozelli, L. A.; Palhares, R. M.; Souza, F. O.; Mendes, E. M.A. M., Reducing conservativeness in recent stability conditions of TS fuzzy systems, Automatica, 45, 6, 1580-1583 (2009) · Zbl 1166.93344
[39] Mozelli, L. A.; Palhares, R. M.; Avellar, G. S.C., A systematic approach to improve multiple Lyapunov function stability and stabilization conditions for fuzzy systems, Information Sciences, 179, 8, 1149-1162 (2009) · Zbl 1156.93355
[40] Narimani, M.; Lam, H. K., Relaxed LMI-based stability conditions for Takagi-Sugeno fuzzy control systems using regional-membership-function-shape-dependent analysis approach, IEEE Transactions on Fuzzy Systems, 17, 5, 1221-1228 (2009)
[41] Pan, J. T.; Guerra, T. M.; Fei, S. M.; Jaadari, A., Nonquadratic stabilization of continuous T-S fuzzy models: LMI solution for a local approach, IEEE Transactions on Fuzzy Systems, 20, 3, 594-602 (2012)
[42] Peng, C.; Han, Q.-L., Delay-range-dependent robust stabilization for uncertain T-S fuzzy control systems with interval time-varying delays, Information Sciences, 181, 19, 4287-4299 (2011) · Zbl 1242.93067
[44] Rhee, B. J.; Won, S., A new Lyapunov function approach for a Takagi-Sugeno fuzzy control system design, Fuzzy Sets and Systems, 157, 9, 1211-1228 (2006) · Zbl 1090.93025
[45] Sala, A.; Ariño, C., Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: applications of Polya’s theorem, Fuzzy Sets and Systems, 158, 24, 2671-2686 (2007) · Zbl 1133.93348
[46] Sala, A.; Ariño, C., Relaxed stability and performance conditions for Takagi-Sugeno fuzzy systems with knowledge on membership function overlap, IEEE Transactions on Systems, Man, and Cybernetics, 37, 3, 727-732 (2007)
[47] Sala, A.; Ariño, C., Polynomial fuzzy models for nonlinear control: a Taylor series approach, IEEE Transactions on Fuzzy Systems, 17, 6, 1284-1295 (2009)
[48] Strum, J. F., Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimization Methods and Software, 11-12, 625-653 (1999), <http://sedumi.mcmaster.ca/> · Zbl 0973.90526
[49] Su, X.; Shi, P.; Wu, L.; Song, Y.-D., A novel approach to filter design for T-S fuzzy discrete-time systems with time-varying delay, IEEE Transactions on Fuzzy Systems, 20, 6, 1114-1129 (2012)
[50] Su, X.; Shi, P.; Wu, L.; Song, Y.-D., A novel control design on discrete-time Takagi-Sugeno fuzzy systems with time-varying delay, IEEE Transactions on Fuzzy Systems (2013)
[51] Su, X.; Wu, L.; Shi, P., Sensor networks with random link failures: distributed filtering for T-S fuzzy systems, IEEE Transactions on Industrial Informatics (2013)
[52] Sun, C.-H.; Wang, Y.-T.; Chang, C.-C., Switching T-S fuzzy model-based guaranteed cost control for two-wheeled mobile robots, International Journal of Innovative Computing, Information and Control, 8, 5, 3015-3028 (2012)
[53] Sun, C.-H.; Lin, S.-W.; Wang, Y.-T., Relaxed stabilization conditions for switching T-S fuzzy systems with practical constraints, International Journal of Innovative Computing, Information and Control, 8, 6, 4133-4145 (2012)
[55] Tan, W.; Packard, A., Stability region analysis using polynomial composite polynomial Lyapunov functions and sum-of-squares programming, IEEE Transactions on Automatic Control, 53, 2, 565-571 (2008) · Zbl 1367.34079
[57] Tanaka, K.; Hori, T.; Wang, H. O., A multiple Lyapunov function approach to stabilization of fuzzy control systems, IEEE Transactions on Fuzzy Systems, 11, 4, 582-589 (2003)
[58] Tanaka, K.; Ikeda, T.; Wang, H. O., Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs, IEEE Transactions on Fuzzy Systems, 6, 2, 250-265 (1998)
[59] Tanaka, K.; Yoshida, H.; Ohtake, H.; Wang, H. O., A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems, IEEE Transactions on Fuzzy Systems, 17, 4, 911-922 (2009)
[60] Tognetti, E. S.; Oliveira, R. C.L. F.; Peres, P. L.D., Selective \(H_2\) and \(H_\infty\) Stabilization of Takagi-Sugeno Fuzzy Systems, IEEE Transactions on Fuzzy Systems, 19, 5, 890-900 (2011)
[61] Topcu, U.; Packard, A.; Seiler, P., Local stability analysis using simulations and sum-of-squares programming, Automatica, 44, 10, 2669-2675 (2008) · Zbl 1155.93417
[62] Tuan, H. D.; Apkarian, P.; Narikiyo, T.; Yamamoto, Y., Parameterized linear matrix inequality techniques in fuzzy control system design, IEEE Transactions on Fuzzy Systems, 9, 2, 324-332 (2001)
[63] Wang, L.; Liu, X., Local analysis of continuous-time Takagi-Sugeno fuzzy system with disturbances bounded by magnitude or energy: a lagrange multiplier method, Information Sciences, 248, 89-102 (2013) · Zbl 1337.93053
[64] Xie, X.; Ma, H.; Zhao, Y.; Ding, D. W.; Wang, Y., Control synthesis of discrete-time T-S fuzzy systems based on a novel non-PDC control scheme, IEEE Transactions on Fuzzy Systems (2013)
[65] Zhou, S.; Ren, W.; Lam, J., Stabilization for T-S model based uncertain stochastic systems, Information Sciences, 181, 4, 779-791 (2011) · Zbl 1209.93163
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.