Language:   Search:   Contact
Zentralblatt MATH has released its new interface!
For an improved author identification, see the new author database of ZBMATH.

Simple Search

Query:
Enter a query and click »Search«...
Format:
Display: entries per page entries
Zbl 1240.60011
Györfi, László; Kevei, Péter
On the rate of convergence of the St. Petersburg game.
(English)
[J] Period. Math. Hung. 62, No. 1, 13-37 (2011). ISSN 0031-5303; ISSN 1588-2829/e

Let $P(X_{n}=2^{k})=2^{- k}$ with independent $X_{n}$, $X_{n}^{(c)}=\min(X_{n},c)$, $S_{n}^{(c)}=\sum_{k=1}^{n}X_{k}^{(c)}$. $\gamma_{n} {\rightarrow}^{(c)} \gamma$ means either $\gamma \in (1/2,1)$, $\gamma_{n}\rightarrow \gamma$ or $\gamma =1$ and $\gamma_{n}$ has no other limit points than $1$ and $1/2$; $\{x\}$, $[x]$ denote the fractional and the integer parts of $x$. The authors prove the following theorems.\par 1. For $\varepsilon >0$, $P(\vert S_{n}^{(n)}-E(S_{n}^{(n)})\vert (n\log_{2}n)^{-1}>\varepsilon )< 2n^{4-(\log\log n)\varepsilon \log_{2}e}$. \par 2. $n^{-1}\sum_{i=1}^{n}(X_{i}-n)^{+}$, $n=n_{k}$, converges in distribution for $k\rightarrow \infty$ to some nondegenerate limit if and only if $n_k/2^{[\log_2n_k]} {\rightarrow}^{(c)} \gamma$, and the limit has the characteristic function $\exp(\int_{_{0}}^{^{\infty }}(e^{itx}-1-itx(1+x^{2})^{-1})d(-2^{\{\log_{2}[\gamma (x+1)]\}}(x+1)^{-1}))$. \par 3. Same for $n_{k}^{-1}S_{n_{k}}^{(n_{k})}-\log_{2}n_{k}$ with $-x^{-1} 2^{\{\log_{2}(\gamma x)\}}$ for $x<1$, $0$ otherwise, under $d$. \par 4. $(VarS_{n}^{c_{n}})^{-1/2}(S_{n}^{c_{n}}-E(S_{n}^{c_{n}}))$ tends in distribution to the standard normal one if and only if $c_{n}/n\rightarrow 0$.\par 5. $(0.16+o(1))/\log_{2}n\leq E(\log_{2}(S_{n}/(n\log_{2}n)))-\log_{2}\log_{2}n/(\log 2)(\log_{2}n)\leq (2.52+o(1))/\log_{2} n$. \par 6. $E((\log_{2}(S_{n}/ (n\log_{2}n)) )^{2}) =O(1/\log n)$. \par Theorem 5 appears in a paragraph entitled Growth rate of sequential St. Petersburg portfolio games'' in which some results of {\it L. Györfi} and {\it P. Kevei} [Algorithmic learning theory. Proceedings. Berlin: Springer. Lecture Notes in Computer Science 5809. Lecture Notes in Artificial Intelligence, 83--96 (2009; Zbl 05641000)] are presented. The paper finishes by showing histograms of some $\log_{2}S_{n}$, $\log_{2}S_{n}^{(c)}$ and by proving that $\log_{2}S_{n}$ is not asymptotically normal.
[Ion Cuculescu (Bucharest)]
MSC 2000:
*60E05 General theory of probability distributions
60F15 Strong limit theorems
60G50 Sums of independent random variables

Keywords: St. Petersburg games; truncation; almost sure properties; limit distribution; portfolio games

Citations: Zbl 05641000

Highlights
Master Server

Zentralblatt MATH Berlin [Germany]

© FIZ Karlsruhe GmbH

Zentralblatt MATH master server is maintained by the Editorial Office in Berlin, Section Mathematics and Computer Science of FIZ Karlsruhe and is updated daily.

Other Mirror Sites

Copyright © 2013 Zentralblatt MATH | European Mathematical Society | FIZ Karlsruhe | Heidelberg Academy of Sciences