×

Cheeger constants of surfaces and isoperimetric inequalities. (English) Zbl 1183.53030

If \((M^n,g)\) is a Riemannian manifold of infinite volume, the isoperimetric profile function of \(M^n\) is the function \(I_{M}:\mathbb R^+\rightarrow\mathbb R^+\) defined by
\[ I_{M}(t)=\inf_\Omega \{\text{vol}_{n-1}(\partial\Omega): \Omega\subset M^n, \text{ vol}_n(\Omega)=t\}, \]
where \(\Omega\) ranges over all regions of \(M^n\) with smooth boundary. One can similarly define an isoperimetric profile function \(I_M:\mathbb{N}\rightarrow\mathbb N\) for simplicial manifolds \(M^n\). The main result of this paper is the following: Let \(S\) be a plane with holes equipped either with a Riemannian metric or with a simplicial complex structure. Assume that there is some \(K>0\) such that for all \(t\in[K,100K],\) \(I_S(t)\geq10^2\sqrt{t}\). Then for all \(t>K\), \(I_S(t)\geq\frac{1}{\sqrt{K}}t\).
As a corollary one obtains a similar result for finite genus surfaces. Notice that the result above generalizes a similar result of Gromov for surfaces \((S,g)\) which are homeomorphic to the plane.
The author uses bounds on the Cheeger constants to study isoperimetric profiles of surfaces. If \((M^n,g)\) is a Riemannian manifold, one defines the Cheeger constant \(h\) of \(M\) by
\[ h(M)=\inf_A \bigg\{\frac{\text{vol}_{n-1}(\partial A)}{\text{vol}_n(A)} \bigg\}: \text{vol}_n(A)\leq\frac{1}{2} \text{vol}_n(M)\}, \]
where \(A\) ranges over all open subsets of \(M\) with smooth boundary. If \(M\) is a simplicial manifold, one can similarly define the Cheeger constant of \(M\). The author gives new proofs of the Cheeger constant bounds which have the advantage that they are more direct than the existing ones. More concretely, it is proved the following: Let \(S\) be a closed orientable surface of genus \(g\geq1\) (resp. \(S\) of genus 0) equipped either with a Riemannian metric or with a simplicial complex structure. Let \(A(S)\) be its (Riemannian or simplicial) area. Then, the Cheeger constant, \(h(S)\), of \(S\) satisfies the inequality \(h(S)\leq\frac{4\cdot10^3\cdot g^2}{\sqrt{A(S)}}\) (resp. \(\frac{16}{\sqrt{A(S)}})\).
An interesting question asked by the author is whether Gromov’s theorem on filling area has an analogue for higher dimensional filling functions \(FV_i\), \(i\geq2\), which are defined in the paper. The bounds on the Cheeger constants of surfaces can be used to obtain some partial result in this direction. There is also a conjecture stated in the paper: If \(FV_i\) is Euclidean for \(i=2,\dots,k-1\) and \(FV_k\) is sub-Euclidean, then \(FV_k\) is linear. A theorem proved by the author in the paper gives some evidence in favor of this conjecture.

MSC:

53C20 Global Riemannian geometry, including pinching
53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
20F65 Geometric group theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] F. J. Almgren Jr., An isoperimetric inequality, Proc. Amer. Math. Soc. 15 (1964), 284 – 285. · Zbl 0187.31203
[2] A. S. Besicovitch, On two problems of Loewner, J. London Math. Soc. 27 (1952), 141 – 144. · Zbl 0046.05304 · doi:10.1112/jlms/s1-27.2.141
[3] Mario Bonk and Alexandre Eremenko, Uniformly hyperbolic surfaces, Indiana Univ. Math. J. 49 (2000), no. 1, 61 – 80. · Zbl 0961.53021
[4] N. Brady and M. R. Bridson, There is only one gap in the isoperimetric spectrum, Geom. Funct. Anal. 10 (2000), no. 5, 1053 – 1070. · Zbl 0971.20019 · doi:10.1007/PL00001646
[5] N. Brady, M. R. Bridson, M. Forester, K. Shankar, Snowflake groups, Perron-Frobenius eigenvalues, and isoperimetric spectra, preprint. · Zbl 1228.20031
[6] Martin R. Bridson, Fractional isoperimetric inequalities and subgroup distortion, J. Amer. Math. Soc. 12 (1999), no. 4, 1103 – 1118. · Zbl 0963.20018
[7] Itai Benjamini and Jianguo Cao, A new isoperimetric comparison theorem for surfaces of variable curvature, Duke Math. J. 85 (1996), no. 2, 359 – 396. · Zbl 0886.53031 · doi:10.1215/S0012-7094-96-08515-4
[8] B. H. Bowditch, A short proof that a subquadratic isoperimetric inequality implies a linear one, Michigan Math. J. 42 (1995), no. 1, 103 – 107. · Zbl 0835.53051 · doi:10.1307/mmj/1029005156
[9] José Burillo and Jennifer Taback, Equivalence of geometric and combinatorial Dehn functions, New York J. Math. 8 (2002), 169 – 179. · Zbl 1042.20029
[10] M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin, 1990 (French). Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups]; With an English summary. · Zbl 0727.20018
[11] Christopher B. Croke, A sharp four-dimensional isoperimetric inequality, Comment. Math. Helv. 59 (1984), no. 2, 187 – 192. · Zbl 0552.53017 · doi:10.1007/BF02566344
[12] Cornelia Druţu, Cônes asymptotiques et invariants de quasi-isométrie pour des espaces métriques hyperboliques, Ann. Inst. Fourier (Grenoble) 51 (2001), no. 1, 81 – 97 (French, with English and French summaries). · Zbl 0992.20031
[13] David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy, Michael S. Paterson, and William P. Thurston, Word processing in groups, Jones and Bartlett Publishers, Boston, MA, 1992. · Zbl 0764.20017
[14] S. M. Gersten, Subgroups of word hyperbolic groups in dimension 2, J. London Math. Soc. (2) 54 (1996), no. 2, 261 – 283. · Zbl 0861.20033 · doi:10.1112/jlms/54.2.261
[15] John R. Gilbert, Joan P. Hutchinson, and Robert Endre Tarjan, A separator theorem for graphs of bounded genus, J. Algorithms 5 (1984), no. 3, 391 – 407. · Zbl 0556.05022 · doi:10.1016/0196-6774(84)90019-1
[16] R. Grimaldi and P. Pansu, Remplissage et surfaces de révolution, J. Math. Pures Appl. (9) 82 (2003), no. 8, 1005 – 1046 (French, with English and French summaries). · Zbl 1109.53040 · doi:10.1016/S0021-7824(03)00031-X
[17] Mikhael Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983), no. 1, 1 – 147. · Zbl 0515.53037
[18] M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75 – 263. · Zbl 0634.20015 · doi:10.1007/978-1-4613-9586-7_3
[19] M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1 – 295. · Zbl 0841.20039
[20] Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, vol. 152, Birkhäuser Boston, Inc., Boston, MA, 1999. Based on the 1981 French original [ MR0682063 (85e:53051)]; With appendices by M. Katz, P. Pansu and S. Semmes; Translated from the French by Sean Michael Bates. · Zbl 0953.53002
[21] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. · Zbl 1044.55001
[22] Joseph Hersch, Quatre propriétés isopérimétriques de membranes sphériques homogènes, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A1645 – A1648 (French). · Zbl 0224.73083
[23] Bruce Kleiner, An isoperimetric comparison theorem, Invent. Math. 108 (1992), no. 1, 37 – 47. · Zbl 0770.53031 · doi:10.1007/BF02100598
[24] Nicholas Korevaar, Upper bounds for eigenvalues of conformal metrics, J. Differential Geom. 37 (1993), no. 1, 73 – 93. · Zbl 0794.58045
[25] Richard J. Lipton and Robert Endre Tarjan, Applications of a planar separator theorem, SIAM J. Comput. 9 (1980), no. 3, 615 – 627. · Zbl 0456.68077 · doi:10.1137/0209046
[26] Frank Morgan, Michael Hutchings, and Hugh Howards, The isoperimetric problem on surfaces of revolution of decreasing Gauss curvature, Trans. Amer. Math. Soc. 352 (2000), no. 11, 4889 – 4909. · Zbl 0976.53082
[27] A. Yu. Ol\(^{\prime}\)shanskiĭ, Hyperbolicity of groups with subquadratic isoperimetric inequality, Internat. J. Algebra Comput. 1 (1991), no. 3, 281 – 289. · Zbl 0791.20034 · doi:10.1142/S0218196791000183
[28] Pierre Pansu, Une inégalité isopérimétrique sur le groupe de Heisenberg, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 2, 127 – 130 (French, with English summary). · Zbl 0502.53039
[29] P. Papasoglu, An algorithm detecting hyperbolicity, Geometric and computational perspectives on infinite groups (Minneapolis, MN and New Brunswick, NJ, 1994) DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 25, Amer. Math. Soc., Providence, RI, 1996, pp. 193 – 200. · Zbl 0857.20017
[30] P. Papasoglu, Isodiametric and isoperimetric inequalities for complexes and groups, J. London Math. Soc. (2) 62 (2000), no. 1, 97 – 106. · Zbl 0962.20032 · doi:10.1112/S0024610700008942
[31] L. Polterovich, J-C. Sikorav, A linear isoperimetric inequality for the punctured Euclidean plane, preprint, arXive math.GR/0106216.
[32] Manuel Ritoré, The isoperimetric problem in complete surfaces of nonnegative curvature, J. Geom. Anal. 11 (2001), no. 3, 509 – 517. · Zbl 1035.53085 · doi:10.1007/BF02922017
[33] Manuel Ritoré, Constant geodesic curvature curves and isoperimetric domains in rotationally symmetric surfaces, Comm. Anal. Geom. 9 (2001), no. 5, 1093 – 1138. · Zbl 1018.53003 · doi:10.4310/CAG.2001.v9.n5.a5
[34] Mark V. Sapir, Jean-Camille Birget, and Eliyahu Rips, Isoperimetric and isodiametric functions of groups, Ann. of Math. (2) 156 (2002), no. 2, 345 – 466. , https://doi.org/10.2307/3597195 J.-C. Birget, A. Yu. Ol\(^{\prime}\)shanskii, E. Rips, and M. V. Sapir, Isoperimetric functions of groups and computational complexity of the word problem, Ann. of Math. (2) 156 (2002), no. 2, 467 – 518. · Zbl 1026.20018 · doi:10.2307/3597196
[35] Peter Topping, Mean curvature flow and geometric inequalities, J. Reine Angew. Math. 503 (1998), 47 – 61. · Zbl 0909.53044 · doi:10.1515/crll.1998.099
[36] X. Wang and S. J. Pride, Second order Dehn functions and HNN-extensions, J. Austral. Math. Soc. Ser. A 67 (1999), no. 2, 272 – 288. Group theory. · Zbl 0953.20012
[37] Stefan Wenger, Gromov hyperbolic spaces and the sharp isoperimetric constant, Invent. Math. 171 (2008), no. 1, 227 – 255. · Zbl 1147.53036 · doi:10.1007/s00222-007-0084-8
[38] S. Wenger, Isoperimetric inequalities and the asymptotic rank of metric spaces, preprint. · Zbl 1217.49033
[39] Paul C. Yang and Shing Tung Yau, Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980), no. 1, 55 – 63. · Zbl 0446.58017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.