×

Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions. (English) Zbl 1187.35246

This paper deals with strong \(L_x^2(\mathbb R^n)\)-solutions to the mass-critical (or pseudoconformal) defocusing nonlinear Schrödinger equation \(iu_t+\Delta u=|u|^{4/n}u\) \((*)\). The aim of the paper is to verify the special case of the following conjecture in the case where \(n\geq 3\) and \(u_0\) (and \(u_{\pm}\)) are restricted to be spherically symmetric:
Conjecture (Global existence and scattering): Given any finite-mass initial data \(u_0\in L_x^2(\mathbb R^n)\), there exists a unique global solution \(u\in C_t^0L_x^2(\mathbb R\times \mathbb R^n)\cup L_{t,x}^{2(n+2)/n}(\mathbb R\times\mathbb R^n)\) to the equation \((*)\) with \(u(0)=u_0\). Furthermore, there exist \(u_{\pm}\in L_x^2(\mathbb R^n)\) such that \(\lim_{t\to\pm\infty}\|u(t)-e^{it\Delta}u_{\pm}\|_{L_x^2(\mathbb R^n)}= 0\), and the maps \(u_0\mapsto u_{\pm}\) are homeomorphisms on \(L_x^2(\mathbb R^n)\). The authors borrow from the treatment of the energy-critical problem. They combine the frequency-localized Morawetz inequality approach used by Bourgain and others, and the more recent approach by C. E. Kenig and F. Merle [Invent. Math. 166, No. 3, 645–675 (2006; Zbl 1115.35125)], which considers an actual blowup solution (rather than an almost blowup solution). The advantage of this combined approach is that there is enough regularity to use the classical energy conservation law. The assumptions on the dimension (\(n\geq 3)\) and of spherical symmetry are used in an essential way in the proof.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35P25 Scattering theory for PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
35B44 Blow-up in context of PDEs

Citations:

Zbl 1115.35125
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] P. BéGout and A. Vargas, Mass concentration phenomena for the \(L^2\)-critical nonlinear Schrödinger equation , Trans. Amer. Math. Soc. 359 (2007), 5257–5282. · Zbl 1171.35109 · doi:10.1090/S0002-9947-07-04250-X
[2] J. Bourgain, Refinements of Strichartz inequality and applications to \(2\)D-NLS with critical nonlinearity , Internat. Math. Res. Notices 1998 , no. 5, 253–283. · Zbl 0917.35126 · doi:10.1155/S1073792898000191
[3] -, Global Solutions of Nonlinear Schrödinger Equations , Amer. Math. Soc. Colloq. Publ. 46 , Amer. Math. Soc., Providence, 1999. · Zbl 0933.35178
[4] -, Global well-posedness of defocusing critical nonlinear Schrödinger equation in the radial case , J. Amer. Math. Soc. 12 (1999), 145–171. JSTOR: · Zbl 0958.35126 · doi:10.1090/S0894-0347-99-00283-0
[5] R. Carles and S. Keraani, On the role of quadratic oscillations in nonlinear Schrödinger equations, II: The \(L^2\)-critical case , Trans. Amer. Math. Soc. 359 (2007), 33–62. · Zbl 1115.35119 · doi:10.1090/S0002-9947-06-03955-9
[6] T. Cazenave, Semilinear Schrödinger Equations, Courant Lect. Notes Math. 10 , New York Univ., Courant Inst. Math. Sci., New York, 2003.
[7] T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in \(H^s\) , Nonlinear Anal. 14 (1990), 807–836. · Zbl 0706.35127 · doi:10.1016/0362-546X(90)90023-A
[8] M. Christ, J. Colliander, and T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations , preprint,\arxivmath/0311048v1[math.AP]
[9] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, “Existence globale et diffusion pour l’équation de Schrödinger nonlinéaire répulsive cubique sur \(\R^3\) en dessous l’espace d’énergie” in Journées “Équations aux Dérivées Partielles” (Forges-les-Eaux, France, 2002) , Univ. Nantes, Nantes, 2002, no. 10.
[10] -, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in \(\R^3\) , to appear in Ann. of Math. (2) 166 (2007), preprint,\arxivmath/0402129v7[math.AP]
[11] J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear Schrödinger equations , J. Math. Pures Appl. (9) 64 (1985), 363–401. · Zbl 0535.35069
[12] R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations , J. Math. Phys. 18 (1977), 1794–1797. · Zbl 0372.35009 · doi:10.1063/1.523491
[13] N. Hayashi and Y. Tsutsumi, “Remarks on the scattering problem for nonlinear Schrödinger equations” in Differential Equations and Mathematical Physics (Birmingham, Ala., 1986) , Lecture Notes in Math. 1285 , Springer, Berlin, 1987, 162–168. · Zbl 0633.35059 · doi:10.1007/BFb0080593
[14] T. Kato, On nonlinear Schrödinger equations , Ann. Inst. H. Poincaré Phys. Théor. 46 (1987), 113–129. · Zbl 0632.35038
[15] -, On nonlinear Schrödinger equations, II: \(H^s\)-solutions and unconditional well-posedness , J. Anal. Math. 67 (1995), 281–306. · Zbl 0848.35124 · doi:10.1007/BF02787794
[16] M. Keel and T. Tao, Endpoint Strichartz estimates , Amer. Math. J. 120 (1998), 955–980. · Zbl 0922.35028 · doi:10.1353/ajm.1998.0039
[17] C. E. Kenig and F. Merle, Global well-posedness, scattering, and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case , Invent. Math. 166 (2006), 645–675. · Zbl 1115.35125 · doi:10.1007/s00222-006-0011-4
[18] S. Keraani, On the blow up phenomenon of the critical nonlinear Schrödinger equation , J. Funct. Anal. 235 (2006), 171–192. · Zbl 1099.35132 · doi:10.1016/j.jfa.2005.10.005
[19] F. Merle, Existence of blow-up solutions in the energy space for the critical generalized KdV equation , J. Amer. Math. Soc. 14 (2001), 555–578. JSTOR: · Zbl 0970.35128 · doi:10.1090/S0894-0347-01-00369-1
[20] F. Merle and Y. Tsutsumi, \(L^2\) concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity , J. Differential Equations 84 (1990), 205–214. · Zbl 0722.35047 · doi:10.1016/0022-0396(90)90075-Z
[21] F. Merle and L. Vega, Compactness at blow-up time for \(L^2\) solutions of the critical nonlinear Schrödinger equation in \(2\)D , Internat. Math. Res. Notices 8 (1998), 399–425. · Zbl 0913.35126 · doi:10.1155/S1073792898000270
[22] C. S. Morawetz, Time decay for the nonlinear Klein-Gordon equations , Proc. Roy. Soc. Ser. A 306 (1968), 291–296. · Zbl 0157.41502 · doi:10.1098/rspa.1968.0151
[23] E. Ryckman and M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in \(\R^1+4\), Amer. J. Math. 129 (2007), 1–60. · Zbl 1160.35067 · doi:10.1353/ajm.2007.0004
[24] E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals , Princeton Math. Ser. 43 , Monogr. Harmonic Anal. 3 , Princeton Univ. Press, Princeton, 1993. · Zbl 0821.42001
[25] E. M. Stein and G. Weiss, Fractional integrals on n-dimensional Euclidean space , J. Math. Mech. 7 (1958), 503–514. · Zbl 0082.27201
[26] C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse , Appl. Math. Sci. 139 , Springer, New York, 1999. · Zbl 0928.35157
[27] T. Tao, A sharp bilinear restrictions estimate for paraboloids , Geom. Funct. Anal. 13 (2003), 1359–1384. · Zbl 1068.42011 · doi:10.1007/s00039-003-0449-0
[28] -, Global well-posedness and scattering for the higher-dimensional energy-critical nonlinear Schrödinger equation for radial data , New York J. Math. 11 (2005), 57–80. · Zbl 1119.35092
[29] -, A pseudoconformal compactification of the nonlinear Schrödinger equation and applications , preprint,\arxivmath/0606254v3[math.AP]
[30] T. Tao and M. Visan, Stability of energy-critical nonlinear Schrödinger equations in high dimensions, Electron. J. Differential Equations 2005 , no. 118. · Zbl 1245.35122
[31] T. Tao, M. Visan, and X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, to appear in Comm. Partial Differential Equations, preprint,\arxivmath/0511070v1[math.AP] · Zbl 1187.35245 · doi:10.1080/03605300701588805
[32] -, Minimal-mass blowup solutions of the mass-critical NLS , to appear in Forum Math., preprint,\arxivmath/0609690v2[math.AP] · Zbl 1154.35085 · doi:10.1515/FORUM.2008.042
[33] Y. Tsutsumi, Scattering problem for nonlinear Schrödinger equations , Ann. Inst. H. Poincaré Phys. Théor. 43 (1985), 321–347. · Zbl 0612.35104
[34] N. Tzirakis, The Cauchy problem for the semilinear quintic Schrödinger equation in one dimension , Differential Integral Equations 18 (2005), 947–960. · Zbl 1212.35459
[35] M. C. Vilela, Regularity of solutions to the free Schrödinger equation with radial initial data , Illinois J. Math. 45 (2001), 361–370. · Zbl 1161.42306
[36] M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J. 138 (2007), 281–374. · Zbl 1131.35081 · doi:10.1215/S0012-7094-07-13825-0
[37] -, The defocusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Ph.D. dissertation, University of California, Los Angeles, Los Angeles, 2006.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.