×

Convergence of Kähler-Ricci flow. (English) Zbl 1185.53078

Summary: We prove a theorem on convergence of Kähler-Ricci flow on a compact Kähler manifold which admits a Kähler-Ricci soliton.

MSC:

53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
32J15 Compact complex surfaces
53C55 Global differential geometry of Hermitian and Kählerian manifolds
58E11 Critical metrics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Herbert J. Alexander and B. A. Taylor, Comparison of two capacities in \?\(^{n}\), Math. Z. 186 (1984), no. 3, 407 – 417. · Zbl 0576.32029 · doi:10.1007/BF01174894
[2] Eric Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), no. 1-2, 1 – 40. · Zbl 0547.32012 · doi:10.1007/BF02392348
[3] Huai Dong Cao, Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds, Invent. Math. 81 (1985), no. 2, 359 – 372. · Zbl 0574.53042 · doi:10.1007/BF01389058
[4] X. X. Chen and G. Tian, Ricci flow on Kähler-Einstein surfaces, Invent. Math. 147 (2002), no. 3, 487 – 544. · Zbl 1047.53043 · doi:10.1007/s002220100181
[5] X. X. Chen and G. Tian, Ricci flow on Kähler-Einstein manifolds, Duke Math. J. 131 (2006), no. 1, 17 – 73. · Zbl 1097.53045 · doi:10.1215/S0012-7094-05-13112-X
[6] Huai-Dong Cao, Gang Tian, and Xiaohua Zhu, Kähler-Ricci solitons on compact complex manifolds with \?\(_{1}\)(\?)>0, Geom. Funct. Anal. 15 (2005), no. 3, 697 – 719. · Zbl 1084.53035 · doi:10.1007/s00039-005-0522-y
[7] A. Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math. 73 (1983), no. 3, 437 – 443. · Zbl 0506.53030 · doi:10.1007/BF01388438
[8] Akito Futaki, Kähler-Einstein metrics and integral invariants, Lecture Notes in Mathematics, vol. 1314, Springer-Verlag, Berlin, 1988. · Zbl 0646.53045
[9] Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255 – 306. · Zbl 0504.53034
[10] Kleiner. B. and Lott, J., Notes on Perelman’s papers, preprint, 2003. · Zbl 1204.53033
[11] Sławomir Kołodziej, The complex Monge-Ampère equation, Acta Math. 180 (1998), no. 1, 69 – 117. · Zbl 0913.35043 · doi:10.1007/BF02392879
[12] Toshiki Mabuchi, \?-energy maps integrating Futaki invariants, Tohoku Math. J. (2) 38 (1986), no. 4, 575 – 593. · Zbl 0619.53040 · doi:10.2748/tmj/1178228410
[13] Perelman, G., The entropy formula for the Ricci flow and its geometric applications, preprint, 2002. · Zbl 1130.53001
[14] Perelman, G., unpublished.
[15] Sesum, N. and Tian, G., Perelman’s argument for uniform bounded scalar curvature and diameter along the Kähler-Ricci flow, preprint, 2005.
[16] Gang Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), no. 1, 1 – 37. · Zbl 0892.53027 · doi:10.1007/s002220050176
[17] Gang Tian and Xiaohua Zhu, Uniqueness of Kähler-Ricci solitons, Acta Math. 184 (2000), no. 2, 271 – 305. · Zbl 1036.53052 · doi:10.1007/BF02392630
[18] Gang Tian and Xiaohua Zhu, A new holomorphic invariant and uniqueness of Kähler-Ricci solitons, Comment. Math. Helv. 77 (2002), no. 2, 297 – 325. · Zbl 1036.53053 · doi:10.1007/s00014-002-8341-3
[19] Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339 – 411. · Zbl 0369.53059 · doi:10.1002/cpa.3160310304
[20] Xiaohua Zhu, Kähler-Ricci soliton typed equations on compact complex manifolds with \?\(_{1}\)(\?)>0, J. Geom. Anal. 10 (2000), no. 4, 759 – 774. · Zbl 1036.53054 · doi:10.1007/BF02921996
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.