×

Theorems stated by Ramanujan. VII: Theorems on continued fractions. (English) JFM 55.0273.01

Verf. behandelt folgende mit gewissen unendlichen Produkten und den Eigenschaften gewisser Modulfunktionen zusammenhängende Sätze:
(1) Mit \[ u = \dfrac x{1+\lower1.7ex\hbox{\(\dfrac{x^5}{1}\)}} \lower4.5ex\hbox{\({}+{}\)} \lower6.2ex\hbox{\(\dfrac{x^{10}}{1}\)} \lower7.8ex\hbox{\({}+{}\)} \lower9.5ex\hbox{\(\dfrac{x^{15}}{1}\)} \lower11.1ex\hbox{\({}+{}\)} \lower12.8ex\hbox{\(\dfrac{x^{20}}{1}\)} \lower14.3ex\hbox{\({}+\cdots\)} \] und \[ v = \dfrac{x^{\frac15}}{1} \lower1.5ex\hbox{\({}+{}\)} \lower3.0ex\hbox{\(\dfrac{x}{1}\)} \lower4.5ex\hbox{\({}+{}\)} \lower6.2ex\hbox{\(\dfrac{x^{2}}{1}\)} \lower7.8ex\hbox{\({}+{}\)} \lower9.5ex\hbox{\(\dfrac{x^{3}}{1}\)} \lower11.1ex\hbox{\({}+{}\)} \lower12.8ex\hbox{\(\dfrac{x^{4}}{1}\)} \lower14.3ex\hbox{\({}+\cdots\)} \] ist \[ v^5=u\cdot\frac{1-2u+4u^2-3u^3+u^4}{1+3u+4u^2+2u^2+u^4}. \]
(2) \( \dfrac{1}{1} \lower1.5ex\hbox{}{}+{}\)

MSC:

05A19 Combinatorial identities, bijective combinatorics
11A55 Continued fractions
11F03 Modular and automorphic functions
PDFBibTeX XMLCite
Full Text: DOI