×

A Menon-type identity in residually finite Dedekind domains. (English) Zbl 1378.11014

Menon’s identity states that \[ \sum_{k=1\atop (k, n)=1}^{n} (k-1, n)=\varphi(n)\tau(n), \] where \(\varphi\) is Euler’s totient function and \(\tau\) is the divisor number function, see P. Kesava Menon [J. Indian Math. Soc., New Ser. 29, 155–163 (1965; Zbl 0144.27706)]. This identity has been generalized by many authors, see e.g. B. Sury [Rend. Circ. Mat. Palermo (2) 58, No. 1, 99–108 (2009; Zbl 1187.20015)]. For a survey of generalizations see L. Tóth [Rend. Semin. Mat., Univ. Politec. Torino 69, No. 1, 97–110 (2011; Zbl 1235.11011)].
In [J. Number Theory 137, 179–185 (2014; Zbl 1293.11008)], the present author extends Menon’s identity to residually finite Dedekind domains, that is, to Dedekind domains \(\mathfrak{D}\) such that for each non-zero ideal \(\mathfrak{n}\) of \(\mathfrak{D}\), the residue class ring \(\mathfrak{D}/\mathfrak{n}\) is finite. In the paper under review the present author extends Sury’s identity to residually finite Dedekind domains.

MSC:

11A25 Arithmetic functions; related numbers; inversion formulas
20D99 Abstract finite groups
13F05 Dedekind, Prüfer, Krull and Mori rings and their generalizations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Atiyah, M. F.; Macdonald, I. G., Introduction to Commutative Algebra (1969), Addison-Wesley Publishing Co.: Addison-Wesley Publishing Co. Reading, Mass.-London-Don Mills, Ont. · Zbl 0175.03601
[2] Chew, Kim Lin; Lawn, Sherry, Residually finite rings, Canad. J. Math., 22, 92-101 (1970) · Zbl 0215.08901
[3] Faith, Carl, Note on residually finite rings, Comm. Algebra, 28, 9, 4223-4226 (2000) · Zbl 0961.16009
[4] Haukkanen, Pentti, Menon’s identity with respect to a generalized divisibility relation, Aequationes Math., 70, 3, 240-246 (2005) · Zbl 1207.11011
[5] Haukkanen, P.; Wang, J., A generalization of Menon’s identity with respect to a set of polynomials, Port. Math., 53, 3, 331-337 (1996) · Zbl 0856.11006
[6] Haukkanen, Pentti; Wang, Jun, High degree analogs of Menon’s identity, Indian J. Math., 39, 1, 37-42 (1997) · Zbl 0896.11002
[7] Hirano, Yasuyuki, On residually finite rings, Math. J. Okayama Univ., 35, 155-167 (1993) · Zbl 0832.16020
[8] Levitz, Kathleen B.; Mott, Joe L., Rings with finite norm property, Canad. J. Math., 24, 557-565 (1972) · Zbl 0222.13006
[9] Menon, P. K., On the sum \(\Sigma(a - 1, n) [(a, n) = 1]\), J. Indian Math. Soc. (N.S.), 29, 155-163 (1965) · Zbl 0144.27706
[10] Miguel, C., Menon’s identity in residually finite Dedekind domains, J. Number Theory, 137, 179-185 (2014) · Zbl 1293.11008
[11] Narkiewicz, W., Elementary and Analytic Theory of Algebraic Numbers, Springer Monographs in Mathematics (2004), Springer-Verlag: Springer-Verlag Berlin · Zbl 1159.11039
[12] Serre, Jean-Pierre, On a theorem of Jordan, Bull. Amer. Math. Soc. (N.S.), 40, 4, 429-440 (2003), (electronic) · Zbl 1047.11045
[13] Sury, B., Some number-theoretic identities from group actions, Rend. Circ. Mat. Palermo (2), 58, 1, 99-108 (2009) · Zbl 1187.20015
[14] Tǎrnǎuceanu, Marius, A generalization of Menon’s identity, J. Number Theory, 132, 11, 2568-2573 (2012) · Zbl 1276.11010
[15] Tóth, L., Menon’s identity and arithmetical sums representing functions of several variables, Rend. Semin. Mat. Univ. Politec. Torino, 69, 1, 97-110 (2011) · Zbl 1235.11011
[16] Venkatramaiah, S., On generalisations of Menon’s identity, Math. Ed. (Siwan), 31, 4, 220-225 (1997) · Zbl 0921.11005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.