×

The resurgence properties of the incomplete gamma function. II. (English) Zbl 1326.33004

Summary: In this paper, we derive a new representation for the incomplete gamma function, exploiting the reformulation of the method of steepest descents by C. J. Howls [Proc. R. Soc. Lond., Ser. A 439, No. 1906, 373–396 (1992; Zbl 0773.30040)]. Using this representation, we obtain numerically computable bounds for the remainder term of the asymptotic expansion of the incomplete gamma function \(\Gamma(-a,\lambda a)\) with large \(a\) and fixed positive \(\lambda\), and an asymptotic expansion for its late coefficients. We also give a rigorous proof of Dingle’s formal result regarding the exponentially improved version of the asymptotic series of \(\Gamma(-a,\lambda a)\).
For Part I see [the author, “The resurgence properties of the incomplete gamma function. I”, Preprint, arXiv:1408.0674].

MSC:

33B20 Incomplete beta and gamma functions (error functions, probability integral, Fresnel integrals)

Citations:

Zbl 0773.30040

Software:

DLMF
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Howls, Hyperasymptotics for integrals with finite endpoints, Proc. R. Soc. Lond. A 439 pp 373– (1992) · Zbl 0773.30040 · doi:10.1098/rspa.1992.0156
[2] NIST Digital Library of Mathematical Functions http://dlmf.nist.gov/ · Zbl 1019.65001
[3] Temme, Computational aspects of incomplete gamma functions with large complex parameters, Approximation and Computation. A Festschrift in Honor of Walter Gautschi 119 pp 551–
[4] Dunster, Asymptotics of the Generalized exponential integral, and error bounds in the uniform asymptotic smoothing of its Stokes discontinuities, Proc. R. Soc. Lond. A 452 pp 1351– (1996) · Zbl 0866.41025 · doi:10.1098/rspa.1996.0069
[5] Gautschi, Exponential integral 1e-xtt-ndt for large values of n, J. Res. Natl. Bur. Stand 62 pp 123– (1959) · Zbl 0118.32604 · doi:10.6028/jres.062.022
[6] Dingle, Asymptotic Expansions: Their Derivation and Interpretation (1973) · Zbl 0279.41030
[7] G. Nemes The resurgence properties of the incomplete gamma function I Analysis and Applications
[8] Berry, Hyperasymptotics for integrals with saddles, Proc. R. Soc. Lond. A 434 pp 657– (1991) · Zbl 0764.30031 · doi:10.1098/rspa.1991.0119
[9] Howls, On the higher-order Stokes phenomenon, Proc. R. Soc. Lond. A 460 pp 2285– (2004) · Zbl 1090.35054 · doi:10.1098/rspa.2004.1299
[10] Nemes, Error bounds and exponential improvements for the asymptotic expansions of the gamma function and its reciprocal, Proc. R. Soc. Edinb. A · Zbl 1321.33004
[11] Boyd, Gamma function asymptotics by an extension of the method of steepest descents, Proc. R. Soc. Lond. A 447 pp 609– (1994) · Zbl 0829.33001 · doi:10.1098/rspa.1994.0158
[12] Olver, Uniform, exponentially improved, asymptotic expansions for the Confluent Hypergeometric function and other integral transforms, SIAM J. Math. Anal. 22 pp 1475– (1991) · Zbl 0738.41030 · doi:10.1137/0522095
[13] Olver, Uniform, exponentially improved, asymptotic expansions for the generalized exponential integral, SIAM J. Math. Anal. 22 pp 1460– (1991) · Zbl 0743.41025 · doi:10.1137/0522094
[14] Paris, Asymptotics and Mellin-Barnes Integrals (2001) · doi:10.1017/CBO9780511546662
[15] Meijer, Asymptotische Entwicklungen von Besselschen, Hankelschen und verwandten funktionen III, Proc. K. Akad. Wet. Amsterdam 35 pp 948– (1932)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.