×

Partial regularity of solution to generalized Navier-Stokes problem. (English) Zbl 1303.35058

The author studies the regularity of solutions to the generalized Navier-Stokes equations up to \(C^2\) boundary of the domain \(\Omega \subset \mathbb R^d\) (\(d=2,3\)): \(u_t-\operatorname{div}T(Du,p)+\operatorname{div}(u \otimes u) +\nabla p= f\), \(\operatorname{div}u=0\) in \((0,\tau)\times \Omega\) with the deviatoric part \(\operatorname{div}T(Du,p)\). The Hausdorff measure of a singular set defined as a complement of a set where a solution is Hölder continuous, is estimated. Indirect approach to show partial regularity, for dimension two, is used to get even an empty set of singular points.

MSC:

35Q30 Navier-Stokes equations
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
35B65 Smoothness and regularity of solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amrouche, C., Girault, V., Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J., 44(119), no. 1, 109-140 (1994); · Zbl 0823.35140
[2] Bridgman, P. W., The Physics of High Pressure, MacMillan, New York (1931);
[3] Bulíček, M., Kaplický, P., Incompressible Fluids With Shear Rate and Pressure Dependent Viscosity: Regularity of Steady Planar flows, Discrete Contin. Dyn. Syst. Ser. S 1, no. 1, 41-50 (2008); · Zbl 1153.35314
[4] Bulíček, M., Málek, J., Rajagopal, K. R., Navier’s Slip and Evolutionary Navier-Stokes-like Systems, Indiana University Mathematics Journal, Vol. 56, No.1 (2007); · Zbl 1129.35055
[5] Cutler, W. G., McMickle, R. H., Webb, W., Schiessler, R.W., Study of the Compressions of Several High Molecular Weight Hydrocarbons, J. Chem. Phys. 29, 727-740 (1958) http://dx.doi.org/10.1063/1.1744583;
[6] Diening, L., Růžička, M., Schumacher, K., A Decomposition Technique for John Domains, Ann. Acad. Sci. Fenn. Math. 35, no.1, 87-114 (2010) http://dx.doi.org/10.5186/aasfm.2010.3506; · Zbl 1194.26022
[7] Evans, L., C., Partial Differential Equations, Graduate studies in Mathematics 19., American Mathematical Society, Providence (1998); · Zbl 0902.35002
[8] Franta, M., Málek, J., Rajagopal, K. R., On Steady Flows of Fluids With Pressure- and Shear-dependent Viscosities, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461,no. 2055, 651-670 (2005) http://dx.doi.org/10.1098/rspa.2004.1360; · Zbl 1145.76311
[9] Fučík, S., John, O., Kufner, A., Function Spaces, Noordhoff Internation Publishing, Leyden and Academia, Praha (1997); · Zbl 0364.46022
[10] Giaquinta, M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, 105. Princeton University Press (1983); · Zbl 0516.49003
[11] Huy, N. D., Stará, J., On Existence and Regularity of Solutions to a Class of Generalized Stationary Stokes Problem, Comment. Math. Univ. Carolin. 47, no. 2, 241-264 (2006); · Zbl 1150.76010
[12] Huy, N., D., On Existence and Regularity of Solutions to Perturbed Systems of Stokes Type, dissertation thesis, Charles University in Prague (2006);
[13] Kaplický, P., Málek, J., Stará, J., C 1, α Solutions to a Class of Nonlinear Fluids in two Dimensions — Stationary Dirichlet Problem, J. Math. Sci., 109, no. 5, 1867-1893 (2002) http://dx.doi.org/10.1023/A:1014440207817; · Zbl 0978.35046
[14] Kaplický, P., Tichý, J., Boundary Regularity of Flows Under Perfect Slip Boundary Conditions, Cent. Eur. J. Math. 11, no. 7, 1243-1263 (2013); · Zbl 1278.35040
[15] Mácha, V. On a Generalized Stokes Problem, Cent. Eur. J. Math. 9, no. 4, 874-887 (2011) http://dx.doi.org/10.2478/s11533-011-0047-6; · Zbl 1233.35060
[16] Málek, J., Mingione, G., Stará, J., Fluids With Pressure Dependent Viscosity, Partial Regularity of Steady Flows, to appear; · Zbl 1101.76021
[17] Málek, J., Mingione, G., Stará, J., Fluids With Pressure Dependent Viscosity, Partial Regularity of Steady Flows, Equadiff 2003, Proceedings of the International Conference of Differential Equations, 380-385 (2005); · Zbl 1101.76021
[18] Málek, J., Nečas, J., Rajagopal, K. R., Global Analysis of the Flows of Fluids with Pressure-Dependent Viscosities, Arch. Rational Mech. Anal. 165, no. 3, 243-269, (2002) http://dx.doi.org/10.1007/s00205-002-0219-4; · Zbl 1022.76011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.