×

Global attractivity for fractional order delay partial integro-differential equations. (English) Zbl 1302.35392

Summary: Our aim in this work is to study the existence and the attractivity of solutions for a system of delay partial integro-differential equations of fractional order. We use the Schauder fixed point theorem for the existence of solutions, and we prove that all solutions are locally asymptotically stable.

MSC:

35R11 Fractional partial differential equations
45K05 Integro-partial differential equations
35B41 Attractors
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kilbas AA, Srivastava HM, Trujillo JJ: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies.Volume 204. Elsevier Science B.V, Amsterdam; 2006.
[2] Hilfer R: Applications of Fractional Calculus in Physics. World Scientific, New Jersey; 2000. · Zbl 0998.26002
[3] Baleanu D, Diethelm K, Scalas E, Trujillo JJ: Fractional Calculus Models and Numerical Methods. World Scientific Publishing, New York; 2012. · Zbl 1248.26011
[4] Lakshmikantham V, Leela S, Vasundhara J: Theory of Fractional Dynamic Systems. Cambridge Academic Publishers, Cambridge; 2009. · Zbl 1188.37002
[5] Podlubny I: Fractional Differential Equations. Academic Press, San Diego; 1999. · Zbl 0918.34010
[6] Abbas S, Benchohra M: Darboux problem for perturbed partial differential equations of fractional order with finite delay.Nonlinear Anal Hybrid Syst 2009, 3:597-604. · Zbl 1219.35345 · doi:10.1016/j.nahs.2009.05.001
[7] Abbas S, Benchohra M: Darboux problem for implicit impulsive partial hyperbolic differential equations.Electron J Diff Equ 2011, 2011:15. · Zbl 1227.26004
[8] Abbas S, Benchohra M, Vityuk AN: On fractional order derivatives and Darboux problem for implicit differential equations.Fract Calc Appl Anal 2012, 15:168-182. · Zbl 1302.35395
[9] Vityuk AN, Golushkov AV: Existence of solutions of systems of partial differential equations of fractional order.Nonlinear Oscil 2004, 7:318-325. · Zbl 1092.35500 · doi:10.1007/s11072-005-0015-9
[10] Banaś J, Dhage BC: Global asymptotic stability of solutions of a functional integral equation.Nonlinear Anal Theory Methods Appl 2008, 69:1945-1952. · Zbl 1154.45005 · doi:10.1016/j.na.2007.07.038
[11] Banaś J, Zając T: A new approach to the theory of functional integral equations of fractional order.J Math Anal Appl 2011, 375:375-387. · Zbl 1210.45005 · doi:10.1016/j.jmaa.2010.09.004
[12] Darwish MA, Henderson J, O’Regan D: Existence and asymptotic stability of solutions of a perturbed fractional functional integral equations with linear modification of the argument.Bull Korean Math Soc 2011, 48:539-553. · Zbl 1220.45011 · doi:10.4134/BKMS.2011.48.3.539
[13] Dhage BC: Global attractivity results for nonlinear functional integral equations via a Krasnoselskii type fixed point theorem.Nonlinear Anal 2009, 70:2485-2493. · Zbl 1163.45005 · doi:10.1016/j.na.2008.03.033
[14] Dhage BC: Attractivity and positivity results for nonlinear functional integral equations via measure of noncompactness.Diff Equ Appl 2010, 2:299-318. · Zbl 1201.45007
[15] Samko, SG; Kilbas, AA; Marichev, OI, Fractional Integrals and Derivatives (1993)
[16] Corduneanu C: Integral Equations and Stability of Feedback Systems. Acedemic Press, New York; 1973. · Zbl 0273.45001
[17] Granas A, Dugundji J: Fixed Point Theory. Springer-Verlag New York; 2003. · Zbl 1025.47002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.