×

Chern-Moser operators and polynomial models in CR geometry. (English) Zbl 1294.32010

Summary: We consider the fundamental invariant of a real hypersurface in \(\mathbb{C}^N\) – its holomorphic symmetry group – and analyze its structure at a point of degenerate Levi form. Generalizing the Chern-Moser operator to hypersurfaces of finite multitype, we compute the Lie algebra of infinitesimal symmetries of the model and provide explicit description for each graded component. Compared with a hyperquadric, it may contain additional components consisting of nonlinear vector fields defined in terms of complex tangential variables.
As a consequence, we obtain exact results on jet determination for hypersurfaces with such models. The results generalize directly the fundamental result of Chern and Moser from quadratic models to polynomials of higher degree.

MSC:

32V40 Real submanifolds in complex manifolds
32V35 Finite-type conditions on CR manifolds
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baouendi, M. S.; Ebenfelt, P.; Rothschild, L. P., Local geometric properties of real submanifolds in complex space, Bull. Amer. Math. Soc. (N.S.), 37, 309-336 (2000) · Zbl 0955.32027
[2] Beals, M.; Fefferman, C.; Graham, R., Strictly pseudoconvex domains in \(C^n\), Bull. Amer. Math. Soc. (N.S.), 8, 125-322 (1983) · Zbl 0546.32008
[3] Bedford, E.; Pinchuk, S. I., Convex domains with noncompact groups of automorphisms, Mat. Sb., 185, 3-26 (1994) · Zbl 0847.32023
[4] Beloshapka, V. K.; Ezhov, V. V.; Schmalz, G., Holomorphic classification of four-dimensional surfaces in \(C^3\), Izv. Ross. Akad. Nauk Ser. Mat., 72, 3-18 (2008) · Zbl 1155.32025
[5] Beloshapka, V. K.; Kossovskiy, I. G., Classification of homogeneous CR-manifolds in dimension 4, J. Math. Anal. Appl., 374, 655-672 (2011) · Zbl 1214.32013
[6] Bloom, T.; Graham, I., On “type” conditions for generic real submanifolds of \(C^n\), Invent. Math., 40, 217-243 (1977) · Zbl 0339.32003
[7] Cartan, E., Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, I, Ann. Mat. Pura Appl., 11, 17-90 (1932) · JFM 58.1256.03
[8] Catlin, D., Boundary invariants of pseudoconvex domains, Ann. of Math., 120, 529-586 (1984) · Zbl 0583.32048
[9] Catlin, D., Subelliptic estimates for \(\overline{\partial} \)-Neumann problem on pseudoconvex domains, Ann. of Math., 126, 131-191 (1987) · Zbl 0627.32013
[10] Chern, S. S.; Moser, J., Real hypersurfaces in complex manifolds, Acta Math., 133, 219-271 (1974) · Zbl 0302.32015
[11] D’Angelo, J., Orders of contact, real hypersurfaces and applications, Ann. of Math., 115, 615-637 (1982) · Zbl 0488.32008
[12] Ebenfelt, P., New invariant tensors in CR structures and normal form for real hypersurfaces at a generic Levi degeneracy, J. Differential Geom., 50, 207-247 (1998) · Zbl 0945.32020
[13] Ebenfelt, P.; Lamel, B.; Zaitsev, D., Degenerate real hypersurfaces in \(C^2\) with few automorphisms, Trans. Amer. Math. Soc., 361, 3241-3267 (2009) · Zbl 1174.14038
[14] Fefferman, C., Parabolic invariant theory in complex analysis, Adv. Math., 31, 131-262 (1979) · Zbl 0444.32013
[15] Fels, G.; Kaup, W., Classification of Levi degenerate homogeneous CR manifolds in dimension 5, Acta Math., 201, 1-82 (2008) · Zbl 1171.32023
[16] Huang, X.; Yin, W., A Bishop surface with a vanishing Bishop invariant, Invent. Math., 176, 461-520 (2009) · Zbl 1171.53045
[17] Isaev, A. V.; Krantz, S. G., Domains with non-compact automorphism group: a survey, Adv. Math., 146, 1-38 (1999) · Zbl 1040.32019
[18] Jacobowitz, H., An Introduction to CR Structures, Math. Surveys Monogr., vol. 32 (1990), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0712.32001
[19] Kim, S. Y.; Zaitsev, D., Equivalence and embedding problems for CR-structures of any codimension, Topology, 44, 557-584 (2005) · Zbl 1079.32022
[20] Kohn, J. J., Boundary behaviour of \(\overline{\partial}\) on weakly pseudoconvex manifolds of dimension two, J. Differential Geom., 6, 523-542 (1972) · Zbl 0256.35060
[21] Kohn, J. J., Subellipticity of the \(\overline{\partial} \)-Neumann problem on pseudoconvex domains: sufficient conditions, Acta Math., 142, 79-122 (1979) · Zbl 0395.35069
[22] Kolář, M., Normal forms for hypersurfaces of finite type in \(C^2\), Math. Res. Lett., 12, 523-542 (2005)
[23] Kolář, M., The Catlin multitype and biholomorphic equivalence of models, Int. Math. Res. Not. IMRN, 18, 3530-3548 (2010) · Zbl 1207.32032
[24] Kolář, M.; Meylan, F., Chern-Moser operators and weighted jet determination problems, (Geometric Analysis of Several Complex Variables and Related Topics. Geometric Analysis of Several Complex Variables and Related Topics, Contemp. Math., vol. 550 (2011)), 75-88 · Zbl 1232.32024
[25] Kruzhilin, N. G.; Loboda, A. V., Linearization of local automorphisms of pseudoconvex surfaces, Dokl. Akad. Nauk SSSR, 271, 280-282 (1983) · Zbl 0582.32040
[26] Poincaré, H., Les fonctions analytiques de deux variables et la représentation conforme, Rend. Circ. Mat. Palermo, 23, 185-220 (1907) · JFM 38.0459.02
[27] Siu, Y.-T., Invariance of plurigenera, Invent. Math., 134, 3, 661-673 (1998) · Zbl 0955.32017
[28] Stanton, N., Infinitesimal CR automorphisms of real hypersurfaces, Amer. J. Math., 118, 209-233 (1996) · Zbl 0849.32012
[29] Treves, F., A treasure trove of geometry and analysis: the hyperquadric, Notices Amer. Math. Soc., 47, 1246-1256 (2000) · Zbl 0986.51038
[30] Vitushkin, A. G., Real analytic hypersurfaces in complex manifolds, Russian Math. Surveys, 40, 1-35 (1985) · Zbl 0588.32025
[31] Webster, S. M., On the Moser normal form at a non-umbilic point, Math. Ann., 233, 97-102 (1978) · Zbl 0358.32013
[32] Yang, P., Automorphism of tube domains, Amer. J. Math., 104, 1005-1024 (1982) · Zbl 0514.32018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.