×

Commutators of higher order Riesz transform associated with Schrödinger operators. (English) Zbl 1279.47052

Let \(L = -\Delta + V\) be a Schrödinger operator on \(\mathbb R^n\) (\(n \geq 3\)), where \(V \not\equiv 0\) is a nonnegative potential belonging to a certain reverse Hölder class \(B_s\) for \(s \geq n\), i.e., \[ \left({1\over |B|}\int_B V(y)^s \, dy \right)^{1/q} \leq {C\over |B|} \int_B V(y)\, dy. \] The auxiliary function \(\rho(x)\) related to \(V(x)\) is defined as \[ \rho(x)=\sup_{r>0}\, \bigg \{ r:\; \frac{1}{r^{n-2}}\int_{B(x, r)}V(y)\, dy \leq 1 \bigg \}, \qquad x\in \mathbb{R}^n. \] Denote by \(\rho_1(x)\) the auxiliary function related to \(|\nabla V|\). For \(\theta>0\), a locally integrable function \(b\) is said to be in the class \(BMO_{\theta}(\rho) \) if \[ \frac{1}{|B(x,r)|}\int_{B(x,r)}|b(y)-b_B|\, dy\leq C\left(1+\frac{r}{\rho(x)}\right)^{\theta} \] for all \(x\in\mathbb{R}^d\) and \(r>0\), where \(b_B=\frac{1}{|B|}\int_B b(y)\, dy\). Define \(BMO_{\infty}(\rho)=\bigcup_{\theta>0}BMO_{\theta}(\rho) \). A norm for \(b\in BMO_\theta(\rho)\), denoted by \([b]_\theta\), is given by the infimum of the constants satisfying the above inequality. Clearly, \(BMO\subseteq BMO_{\infty}(\rho)\).
The authors assume also that \(|\nabla V|\in B_{s_1}, \, s_1\geq n/2\); \(\rho(x)\leq 1\), \(\rho_1(x) \leq C\rho(x)\).
The main result of the paper under review is the \(L^p\)-boundedness of the commutators \({\mathcal R}^H_b f = b{\mathcal R}^H f - {\mathcal R}^H(bf)\) generated by the higher order Riesz transform \({\mathcal R}^H = \nabla^2(-\Delta + V)^{-1}\), where \(b \in \text{BMO}_\infty(\rho)\), \(s_1^\prime < p < \infty, (1/s_1)+(1/s_1^\prime)=1\). The following endpoint inequality is also proved: \[ \left|\left\{x\in{\mathbb R}^n:\left|{\mathcal R}^H_b(f)(x) \right|>\lambda \right\} \right| \leq \frac{[b]_\theta}{\lambda}\|f\|_{H^1_L({\mathbb R}^n)}, \] where \(H^1_L({\mathbb R}^n)\) is the Hardy space associated with the Schrödinger operator \(L\).

MSC:

47B38 Linear operators on function spaces (general)
47F05 General theory of partial differential operators
42B25 Maximal functions, Littlewood-Paley theory
35J10 Schrödinger operator, Schrödinger equation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. R. Coifman, R. Rochberg, and G. Weiss, “Factorization theorems for Hardy spaces in several variables,” Annals of Mathematics, vol. 103, no. 3, pp. 611-635, 1976. · Zbl 0326.32011 · doi:10.2307/1970954
[2] S. Janson, “Mean oscillation and commutators of singular integral operators,” Arkiv för Matematik, vol. 16, no. 2, pp. 263-270, 1978. · Zbl 0404.42013 · doi:10.1007/BF02386000
[3] S. Z. Lu, Q. Wu, and D. Yang, “Boundedness of commutators on Hardy type spaces,” Science in China A, vol. 45, no. 8, pp. 984-997, 2002. · Zbl 1098.42009 · doi:10.1007/BF02879981
[4] M. Bramanti and M. C. Cerutti, “Commutators of singular integrals on homogeneous spaces,” Unione Matematica Italiana B, vol. 10, no. 4, pp. 843-883, 1996. · Zbl 0913.42013
[5] X. T. Duong and L. X. Yan, “Commutators of BMO functions and singular integral operators with non-smooth kernels,” Bulletin of the Australian Mathematical Society, vol. 67, no. 2, pp. 187-200, 2003. · Zbl 1023.42010 · doi:10.1017/S0004972700033669
[6] G. Pradolini and O. Salinas, “Commutators of singular integrals on spaces of homogeneous type,” Czechoslovak Mathematical Journal, vol. 57, no. 1, pp. 75-93, 2007. · Zbl 1174.42322 · doi:10.1007/s10587-007-0045-9
[7] J. Zhong, Harmornic analysis for some Schrödinger type operators [Ph.D. thesis], Princeton University, Princeton, NJ, USA, 1993.
[8] Z. W. Shen, “Lp estimates for Schrödinger operators with certain potentials,” Annales de l’institut Fourier, vol. 45, no. 2, pp. 513-546, 1995. · Zbl 0818.35021 · doi:10.5802/aif.1463
[9] H.-Q. Li, “Estimations Lp des opérateurs de Schrödinger sur les groupes nilpotents,” Journal of Functional Analysis, vol. 161, no. 1, pp. 152-218, 1999. · Zbl 0929.22005 · doi:10.1006/jfan.1998.3347
[10] X. T. Duong, E. M. Ouhabaz, and L. Yan, “Endpoint estimates for Riesz transforms of magnetic Schrödinger operators,” Arkiv för Matematik, vol. 44, no. 2, pp. 261-275, 2006. · Zbl 1172.35370 · doi:10.1007/s11512-006-0021-x
[11] X. T. Duong and L. X. Yan, “Commutators of BMO functions and singular integral operators with non-smooth kernels,” Bulletin of the Australian Mathematical Society, vol. 67, no. 2, pp. 187-200, 2003. · Zbl 1023.42010 · doi:10.1017/S0004972700033669
[12] Z. H. Guo, P. T. Li, and L. Z. Peng, “Lp boundedness of commutators of Riesz transform associated to Schrodinger operator,” Journal of Mathematical Analysis and Applications, vol. 241, no. 1, pp. 421-432, 2008. · Zbl 1140.47035 · doi:10.1016/j.jmaa.2007.05.024
[13] Y. Liu and J. F. Dong, “Some estimates of higher order Riesz transform related to Schrödinger type operators,” Potential Analysis, vol. 32, no. 1, pp. 41-55, 2010. · Zbl 1197.42008 · doi:10.1007/s11118-009-9143-7
[14] D. Yang, D. Yang, and Y. Zhou, “Endpoint properties of localized Riesz transforms and fractional integrals associated to Schrödinger operators,” Potential Analysis, vol. 30, no. 3, pp. 271-300, 2009. · Zbl 1172.47018 · doi:10.1007/s11118-009-9116-x
[15] P. T. Li and L. Z. Peng, “Endpoint estimates for commutators of Riesz transforms associated with Schrödinger operators,” Bulletin of the Australian Mathematical Society, vol. 82, no. 3, pp. 367-389, 2010. · Zbl 1210.47048 · doi:10.1017/S0004972710000390
[16] L. Tang and J. F. Dong, “Boundedness for some Schrödinger type operators on Morrey spaces related to certain nonnegative potentials,” Journal of Mathematical Analysis and Applications, vol. 355, no. 1, pp. 101-109, 2009. · Zbl 1166.35321 · doi:10.1016/j.jmaa.2009.01.043
[17] B. Bongioanni, E. Harboure, and O. Salinas, “Commutators of Riesz transforms related to Schrödinger operators,” The Journal of Fourier Analysis and Applications, vol. 17, no. 1, pp. 115-134, 2011. · Zbl 1213.42075 · doi:10.1007/s00041-010-9133-6
[18] J. F. Dong and Y. Liu, “The higher order Riesz transform and BMO type space associated to Schrödinger operators,” Mathematische Nachrichten, vol. 285, no. 4, pp. 486-496, 2012. · Zbl 1237.42014 · doi:10.1002/mana.201000067
[19] Y. Liu, “Commutators of BMO functions and degenerate Schrödinger operators with certain nonnegative potentials,” Monatshefte für Mathematik, vol. 165, no. 1, pp. 41-56, 2012. · Zbl 1236.42016 · doi:10.1007/s00605-010-0228-6
[20] J. Dziubański and J. Zienkiewicz, “Hardy space H1 associated to Schrödinger operator with potential satisfying reverse Hölder inequality,” Revista Matemática Iberoamericana, vol. 15, no. 2, pp. 279-296, 1999. · Zbl 0959.47028 · doi:10.4171/RMI/257
[21] D. Yang and Y. Zhou, “Localized Hardy spaces H1 related to admissible functions on RD-spaces and applications to Schrödinger operators,” Transactions of the American Mathematical Society, vol. 363, no. 3, pp. 1197-1239, 2011. · Zbl 1217.42044 · doi:10.1090/S0002-9947-2010-05201-8
[22] S. Sugano, “Lp estimates for some Schrödinger type operators and a Calderón-Zygmund operator of Schrödinger type,” Tokyo Journal of Mathematics, vol. 30, no. 1, pp. 179-197, 2007. · Zbl 1207.35112 · doi:10.3836/tjm/1184963655
[23] Y. Liu, J. Z. Huang, and J. F. Dong, “Commutators of Calderon-Zygmund operators related to admissible functions on spaces of homogeneous type and applications to Schrodinger operators,” Science China Mathematics, 2012. · Zbl 1278.42031 · doi:10.1007/s11425-012-4551-3
[24] K. Kurata and S. Sugano, “Estimates of the fundamental solution for magnetic Schrödinger operators and their applications,” The Tohoku Mathematical Journal, vol. 52, no. 3, pp. 367-382, 2000. · Zbl 0967.35035 · doi:10.2748/tmj/1178207819
[25] C. L. Fefferman, “The uncertainty principle,” Bulletin of the American Mathematical Society, vol. 9, no. 2, pp. 129-206, 1983. · Zbl 0526.35080 · doi:10.1090/S0273-0979-1983-15154-6
[26] Z. W. Shen, “Estimates in Lp for magnetic Schrödinger operators,” Indiana University Mathematics Journal, vol. 45, no. 3, pp. 817-841, 1996. · Zbl 0880.35034 · doi:10.1512/iumj.1996.45.1268
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.