×

Global bifurcation diagrams of steady states of systems of PDEs via rigorous numerics: a 3-component reaction-diffusion system. (English) Zbl 1277.65088

Summary: In this paper, we use rigorous numerics to compute several global smooth branches of steady states for a system of three reaction-diffusion PDEs introduced by M. Iida et al. [J. Math. Biol. 53, No. 4, 617–641 (2006; Zbl 1113.92064)] to study the effect of cross-diffusion in competitive interactions. An explicit and mathematically rigorous construction of a global bifurcation diagram is done, except in small neighborhoods of the bifurcations. The proposed method, even though influenced by the work of J. B. van den Berg et al. [Math. Comput. 79, No. 271, 1565–1584 (2010; Zbl 1206.37045)], introduces new analytic estimates, a new gluing-free approach for the construction of global smooth branches and provides a detailed analysis of the choice of the parameters to be made in order to maximize the chances of performing successfully the computational proofs.

MSC:

65N15 Error bounds for boundary value problems involving PDEs
37M20 Computational methods for bifurcation problems in dynamical systems
35K55 Nonlinear parabolic equations
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Kan-on, Y., Mimura, M.: Singular perturbation approach to a 3-component reaction-diffusion system arising in population dynamics. SIAM J. Math. Anal. 29(6), 1519-1536 (1998) (electronic) · Zbl 0920.35015 · doi:10.1137/S0036141097318328
[2] Peng, R., Wang, M.: Pattern formation in the Brusselator system. J. Math. Anal. Appl. 309(1), 151-166 (2005) · Zbl 1108.35049 · doi:10.1016/j.jmaa.2004.12.026
[3] Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321-340 (1971) · Zbl 0219.46015 · doi:10.1016/0022-1236(71)90015-2
[4] Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487-513 (1971) · Zbl 0212.16504 · doi:10.1016/0022-1236(71)90030-9
[5] Iida, M., Mimura, M., Ninomiya, H.: Diffusion, cross-diffusion and competitive interaction. J. Math. Biol. 53(4), 617-641 (2006) · Zbl 1113.92064 · doi:10.1007/s00285-006-0013-2
[6] Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37-72 (1952) · Zbl 1403.92034 · doi:10.1098/rstb.1952.0012
[7] Amann, H., Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Friedrichroda, 1992, Stuttgart · Zbl 0810.35037
[8] Choi, Y.S., Lui, R., Yamada, Y.: Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion. Discrete Contin. Dyn. Syst. 9(5), 1193-1200 (2003) · Zbl 1029.35116 · doi:10.3934/dcds.2003.9.1193
[9] Lou, Y., Ni, W.-M., Wu, Y.: On the global existence of a cross-diffusion system. Discrete Contin. Dyn. Syst. 4(2), 193-203 (1998) · Zbl 0960.35049 · doi:10.3934/dcds.1998.4.193
[10] Izuhara, H., Mimura, M.: Reaction-diffusion system approximation to the cross-diffusion competition system. Hiroshima Math. J. 38(2), 315-347 (2008) · Zbl 1162.35387
[11] van den Berg, J.B., Lessard, J.-P., Mischaikow, K.: Global smooth solution curves using rigorous branch following. Math. Comput. 79(271), 1565-1584 (2010) · Zbl 1206.37045 · doi:10.1090/S0025-5718-10-02325-2
[12] Day, S., Lessard, J.-P., Mischaikow, K.: Validated continuation for equilibria of PDEs. SIAM J. Numer. Anal. 45(4), 1398-1424 (2007) (electronic) · Zbl 1151.65074 · doi:10.1137/050645968
[13] Keller, H.B.: Lectures on Numerical Methods in Bifurcation Problems. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 79. Tata, Bombay (1987). With notes by A.K. Nandakumaran and M. Ramaswamy
[14] Chow, S.N., Hale, J.K.: Methods of Bifurcation Theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 251. Springer, New York (1982) · Zbl 0487.47039 · doi:10.1007/978-1-4613-8159-4
[15] Gameiro, M., Lessard, J.-P.: Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs. J. Differ. Equ. 249(9), 2237-2268 (2010) · Zbl 1256.35196 · doi:10.1016/j.jde.2010.07.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.