×

Differential equations of divergence form in Musielak-Sobolev spaces and a sub-supersolution method. (English) Zbl 1270.35156

Summary: We study some properties of differential operators of divergence form in Musielak-Sobolev spaces and establish a sub-supersolution method for differential equations of divergence form with homogeneous Neumann or Dirichlet boundary condition in Musielak-Sobolev spaces.

MSC:

35B51 Comparison principles in context of PDEs
47H05 Monotone operators and generalizations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kováčik, O.; Rákosník, J., On spaces \(L^{p(x)}\) and \(W^{k, p(x)}\), Czechoslovak Math. J., 41, 592-618 (1991) · Zbl 0784.46029
[2] Růžička, M., Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., vol. 1748 (2000), Springer-Verlag: Springer-Verlag Berlin · Zbl 0968.76531
[3] Diening, L.; Harjulehto, P.; Hästö, P.; Růžička, M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math., vol. 2017 (2011), Springer-Verlag: Springer-Verlag Berlin · Zbl 1222.46002
[4] Krasnoselʼskii, M. A.; Rutickii, Ya. B., Convex Functions and Orlicz Spaces (1961), P. Noordhoff Ltd.: P. Noordhoff Ltd. Groningen
[5] Rao, M. M.; Ren, Z. D., Theory of Orlicz Spaces (1991), Marcel Dekker, Inc.: Marcel Dekker, Inc. New York · Zbl 0724.46032
[6] Adams, R. A.; Fournier, J. J.F., Sobolev Spaces (2003), Academic Press: Academic Press New York · Zbl 0347.46040
[7] Hudzik, H., On generalized Orlicz-Sobolev space, Funct. Approx. Comment. Math., 4, 37-51 (1976) · Zbl 0355.46012
[8] Musielak, J., Orlicz Spaces and Modular Spaces, Lecture Notes in Math., vol. 1034 (1983), Springer-Verlag: Springer-Verlag Berlin · Zbl 0557.46020
[9] Wu, C. X.; Wang, T. F.; Chen, S. T.; Wang, Y. W., Geometry Theory of Orlicz Spaces (1986), Harbin University of Technology Press: Harbin University of Technology Press Harbin, (in Chinese)
[10] Marcelini, P., Regularity and existence of solutions of elliptic equations with \((p, q)\)-growth conditions, J. Differential Equations, 90, 1-30 (1991)
[11] Zhikov, V. V., On some variational problems, Russ. J. Math. Phys., 5, 105-116 (1997) · Zbl 0917.49006
[12] Acerbi, E.; Mingione, G., Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal., 156, 121-140 (2001) · Zbl 0984.49020
[13] Fan, X. L.; Zhang, Q. H., Existence of solutions for \(p(x)\)-Laplacian Dirichlet problems, Nonlinear Anal., 52, 1843-1852 (2003) · Zbl 1146.35353
[14] Alves, C. O.; Souto, M. A.S., Existence of solutions for a class of problems in \(R^N\) involving the \(p(x)\)-Laplacian, Progr. Nonlinear Differential Equations Appl., 66, 17-32 (2005) · Zbl 1193.35082
[15] Antontsev, S.; Shmarev, S., Elliptic equations with anisotropic nonlinearity and nonstandard conditions, (Chipot, M.; Quittner, P., Handbook of Differential Equations, Stationary Partial Differential Equations, vol. 3 (2006), Elsevier B.V.: Elsevier B.V. North Holland, Amsterdam), 1-100 · Zbl 1192.35047
[16] Fan, X. L., On the sub-supersolution method for \(p(x)\)-Laplacian equations, J. Math. Anal. Appl., 330, 665-682 (2007) · Zbl 1206.35103
[17] Mihăilescu, M.; Rădulescu, V., On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc., 135, 2929-2937 (2007) · Zbl 1146.35067
[18] Le, V. K., On a sub-supersolution method for variational inequalities with Leray-Lions operators in variable exponent spaces, Nonlinear Anal., 71, 3305-3321 (2009) · Zbl 1179.35148
[19] Fu, Y. Q., The principle of concentration compactness in \(L^{p(x)}\) spaces and its application, Nonlinear Anal., 71, 1876-1892 (2009) · Zbl 1170.35402
[20] Harjulehto, P.; Hästö, P.; Lê, U. V.; Nuortio, M., Overview of differential equations with non-standard growth, Nonlinear Anal., 72, 4551-4574 (2010) · Zbl 1188.35072
[21] Donaldson, T., Nonlinear elliptic boundary value problems in Orlicz-Sobolev spaces, J. Differential Equations, 10, 507-528 (1971) · Zbl 0218.35028
[22] García-Huidobro, M.; Le, V. K.; Manásevich, R.; Schmitt, K., On principal eigenvalues for quasilinear elliptic differential operators: An Orlicz-Sobolev space setting, NoDEA Nonlinear Differential Equations Appl., 6, 207-225 (1999) · Zbl 0936.35067
[23] Clément, Ph.; García-Huidobro, M.; Manásevich, R.; Schmitt, K., Mountain pass type solutions for quasilinear elliptic equations, Calc. Var., 11, 33-62 (2000) · Zbl 0959.35057
[24] Mihăilescu, M.; Rădulescu, V., Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: An Orlicz-Sobolev space setting, J. Math. Anal. Appl., 330, 416-432 (2007) · Zbl 1176.35071
[25] Clément, Ph.; de Pagter, B.; Sweers, G.; de Thélin, F., Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces, Mediterr. J. Math., 1, 241-267 (2004) · Zbl 1167.35352
[26] Mihăilescu, M.; Moroşanu, G.; Rădulescu, V., Eigenvalue problems in anisotropic Orlicz-Sobolev spaces, C. R. Acad. Sci. Paris, Ser. I, 347, 521-526 (2009) · Zbl 1167.35031
[27] Fan, X. L.; Guan, C. X., Uniform convexity of Musielak-Orlicz-Sobolev spaces and applications, Nonlinear Anal., 73, 163-175 (2010) · Zbl 1198.46010
[28] Tartar, L., An Introduction to Sobolev Spaces and Interpolation Spaces, Lect. Notes Unione Mat. Ital., vol. 3 (2007), Springer: Springer New York · Zbl 1126.46001
[29] Mukherjea, A.; Pothoven, K., Real and Functional Analysis, Part A: Real Analysis (1984), Plenum Press: Plenum Press New York · Zbl 0641.46001
[30] Zeidler, E., Nonlinear Functional Analysis and Its Applications. II/B: Nonlinear Monotone Operators (1990), Springer-Verlag: Springer-Verlag New York
[31] Natanson, I. P., Theory of Functions of a Real Variable (1950), Nauka: Nauka Moscow · Zbl 0064.29102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.