×

Global robust synchronization of a class of nonautonomous chaotic systems with parameter mismatch via variable substitution control. (English) Zbl 1248.34077

Summary: This paper investigates global robust synchronization of a class of nonautonomous chaotic systems with parameter mismatch under the master-slave variable substitution control. A criterion of linear matrix inequality (LMI) for the global robust synchronization is rigorously proven and the corresponding synchronization error bound is analytically estimated. The LMI criterion is then applied to the gyrostat systems, obtaining some simple and optimized algebraic criteria for global robust synchronization of the master-slave gyrostat systems with time-varying phase mismatch under single-variable substitution configurations, further verified in a numerical example.

MSC:

34D06 Synchronization of solutions to ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations
34H05 Control problems involving ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/j.na.2004.04.002 · Zbl 1057.34042
[2] Boccaletti S., Phys. Rep. 336 pp 1–
[3] DOI: 10.1016/j.physd.2009.06.021 · Zbl 1179.37047
[4] DOI: 10.1088/0031-8949/75/3/025 · Zbl 1130.93361
[5] DOI: 10.1109/82.246166
[6] DOI: 10.1142/S0218127402005467 · Zbl 1043.37023
[7] DOI: 10.1142/S0218127408022676 · Zbl 1165.34368
[8] DOI: 10.1016/j.chaos.2009.03.014 · Zbl 1198.93009
[9] DOI: 10.1103/PhysRevLett.71.65
[10] DOI: 10.1142/S0218127497001096 · Zbl 0910.34054
[11] DOI: 10.1142/S0218127404011740 · Zbl 1090.37516
[12] Femat R., LNCIS 378, in: Robust Synchronization of Chaotic Systems via Feedback (2008)
[13] Fostin H., Chaos Solit. Fract. 26 pp 215–
[14] DOI: 10.1006/jsvi.1998.1775 · Zbl 1235.70018
[15] DOI: 10.1006/jsvi.2001.3995 · Zbl 1237.70019
[16] DOI: 10.1006/jsvi.2002.5110 · Zbl 1237.70095
[17] DOI: 10.1063/1.3212940 · Zbl 1317.34117
[18] DOI: 10.1016/j.chaos.2006.05.069
[19] DOI: 10.1103/PhysRevE.61.3716
[20] DOI: 10.1016/j.chaos.2005.05.043 · Zbl 1084.37029
[21] Li F., Chin. Phys. 15 pp 505–
[22] Li X., IEEE Trans. Circuits Syst.-I 50 pp 1381–
[23] DOI: 10.1016/j.mcm.2004.09.011 · Zbl 1121.37031
[24] DOI: 10.1016/S0375-9601(01)00185-2 · Zbl 0983.37036
[25] Liao X., Proc. Am. Control. Conf. 10 pp 2255–
[26] Liu W. B., Int. J. Bifurcation and Chaos 12 pp 261–
[27] DOI: 10.1109/3.910442
[28] DOI: 10.1016/S0375-9601(02)01497-4 · Zbl 1005.37012
[29] DOI: 10.1142/S021812740401014X · Zbl 1129.37323
[30] DOI: 10.1103/PhysRevLett.64.821 · Zbl 0938.37019
[31] DOI: 10.1103/PhysRevA.44.2374
[32] DOI: 10.1142/S0218127404010849 · Zbl 1065.92015
[33] DOI: 10.1017/CBO9780511755743
[34] DOI: 10.1109/81.774230 · Zbl 1055.93549
[35] DOI: 10.1088/1367-2630/12/4/043013 · Zbl 06812301
[36] Wu C. W., IEEE Trans. Circuits Syst.-I 42 pp 494–
[37] DOI: 10.1142/S021812740501220X · Zbl 1079.93019
[38] DOI: 10.1142/S0218127406016914 · Zbl 1114.93089
[39] DOI: 10.1016/j.jsv.2007.04.034 · Zbl 1242.93123
[40] Wu X. F., Kybernetika 44 pp 571–
[41] Yang T., Int. J. Bifurcation and Chaos 15 pp 859–
[42] Yassen M. T., Appl. Math. Comput. 135 pp 113–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.