×

Discontinuous Galerkin method for nonlinear convection-diffusion problems with mixed Dirichlet-Neumann boundary conditions. (English) Zbl 1224.65219

Summary: The paper is devoted to the analysis of the discontinuous Galerkin finite element method (DGFEM) applied to the space semidiscretization of a nonlinear nonstationary convection-diffusion problem with mixed Dirichlet-Neumann boundary conditions. General nonconforming meshes are used and the NIPG, IIPG and SIPG versions of the discretization of diffusion terms are considered. The main attention is paid to the impact of the Neumann boundary condition prescribed on a part of the boundary on the truncation error in the approximation of the nonlinear convective terms. The estimate of this error allows to analyse the error estimate of the method. The results obtained represent the completion and extension of the analysis of V. Dolejší and M. Feistauer [Numer. Funct. Anal. Optimization 26, No. 3, 349–383 (2005; Zbl 1078.65078)], who only proved the truncation error in the approximation of the nonlinear convection terms in the case when the Dirichlet boundary condition on the whole boundary of the computational domain is considered.

MSC:

65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35K55 Nonlinear parabolic equations
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 1078.65078
PDFBibTeX XMLCite
Full Text: DOI EuDML Link

References:

[1] D. N. Arnold: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982), 742–760. · Zbl 0482.65060 · doi:10.1137/0719052
[2] D. N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002), 1749–1779. · Zbl 1008.65080 · doi:10.1137/S0036142901384162
[3] P. G. Ciarlet: The Finite Elements Method for Elliptic Problems. North-Holland, Amsterdam-New York-Oxford, 1978.
[4] B. Cockburn: Discontinuous Galerkin methods for convection-dominated problems. In: High-Order Methods for Computational Physics. Lect. Notes Comput. Sci. Eng., Vol. 9 (T. J. Barth, H. Deconinck, eds.). Springer, Berlin, 1999, pp. 69–224. · Zbl 0937.76049
[5] B. Cockburn, G. E. Karniadakis, C.-W. Shu, eds.: Discontinuous Galerkin Methods. Springer, Berlin, 2000. · Zbl 0989.76045
[6] C. N. Dawson, S. Sun, M. F. Wheeler: Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Eng. 193 (2004), 2565–2580. · Zbl 1067.76565 · doi:10.1016/j.cma.2003.12.059
[7] V. Dolejší, M. Feistauer: Error estimates of the discontinuous Galerkin method for nonlinear nonstationary convection-diffusion problems. Numer. Funct. Anal. Optimization 26 (2005), 349–383. · Zbl 1078.65078 · doi:10.1081/NFA-200067298
[8] V. Dolejší, M. Feistauer, J. Hozman: Analysis of semi-implicit DGFEM for nonlinear convection-diffusion problems on nonconforming meshes. Comput. Methods Appl. Mech. Eng. 196 (2007), 2813–2827. · Zbl 1121.76033 · doi:10.1016/j.cma.2006.09.025
[9] V. Dolejší, M. Feistauer, V. Kučera, V. Sobotíková: An optimal L L 2)-error estimate for the discontinuous Galerkin approximation of a nonlinear non-stationary convection-diffusion problem. IMA J. Numer. Anal. 28 (2008), 496–521. · Zbl 1158.65067 · doi:10.1093/imanum/drm023
[10] V. Dolejší, M. Feistauer, V. Sobotíková: A discontinuous Galerkin method for nonlinear convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 194 (2005), 2709–2733. · Zbl 1093.76034 · doi:10.1016/j.cma.2004.07.017
[11] M. Feistauer: Optimal error estimates in the DGFEM for nonlinear convection-diffusion problems. In: Numerical Mathematics and Advanced Applications, ENUMATH 2007 (K. Kunisch, G. Of, O. Steinbach, eds.). Springer, Heidelberg, 2008, pp. 323–330. · Zbl 1391.65168
[12] M. Feistauer, V. Kučera: Analysis of the DGFEM for nonlinear convection-diffusion problems. ETNA, Electron. Trans. Numer. Anal. 32 (2008), 33–48. · Zbl 1171.65070
[13] M. Feistauer, V. Dolejší, V. Kučera, V. Sobotíková: An optimal L L 2) error estimates for the discontinuous Galerkin approximation of a nonlinear nonstationary convection-diffusion problem on nonconforming meshes. M2AN, Math. Model. Numer. Anal. Submitted.
[14] M. Feistauer, K. Švadlenka: Discontinuous Galerkin method of lines for solving nonstationary singularly perturbed linear problems. J. Numer. Math. 12 (2004), 97–117. · Zbl 1059.65083 · doi:10.1515/156939504323074504
[15] P. Houston, J. Robson, E. Süli: Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems. I: The scalar case. IMA J. Numer. Anal. 25 (2005), 726–749. · Zbl 1084.65116 · doi:10.1093/imanum/dri014
[16] P. Houston, C. Schwab, E. Süli: Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002), 2133–2163. · Zbl 1015.65067 · doi:10.1137/S0036142900374111
[17] A. Kufner, O. John, S. Fučík: Function Spaces. Academia, Prague, 1977.
[18] J. Nečas: Les Méthodes Directes en Thèorie des Equations Elliptiques. Academia, Prague, 1967.
[19] B. Rivière, M.F. Wheeler: A discontinuous Galerkin method applied to nonlinear parabolic equations. In: Discontinuous Galerkin methods. Theory, Computation and Applications. Lect. Notes Comput. Sci. Eng., Vol. 11 (B. Cockburn, G.E. Karniadakis, C.-W. Schu, eds.). Springer, Berlin, 2000, pp. 231–244. · Zbl 0946.65078
[20] B. Rivière, M.F. Wheeler, V. Girault: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems I. Comput. Geosci. 3 (1999), 337–360. · Zbl 0951.65108 · doi:10.1023/A:1011591328604
[21] H.-G. Roos, H. Zarin: The discontinuous Galerkin finite element method for singularly perturbed problems. In: CISC 2002, Lect. Notes Comput. Sci. Eng., Vol. 35 (E. Bensch, ed.). Springer, Berlin, 2003, pp. 246–267.
[22] H.-G. Roos, H. Zarin: A supercloseness result for the discontinuous Galerkin stabilization of convection-diffusion problems on Shishkin meshes. Numer. Methods Partial Differential Equations 23 (2007), 1560–1576. · Zbl 1145.65100 · doi:10.1002/num.20241
[23] T. Roubíček: Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel-Boston-Berlin, 2005.
[24] S. Sun, M.F. Wheeler: Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media. SIAM J. Numer. Anal. 43 (2005), 195–219. · Zbl 1086.76043 · doi:10.1137/S003614290241708X
[25] M.F. Wheeler: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978), 152–161. · Zbl 0384.65058 · doi:10.1137/0715010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.