×

Varieties fibered by good minimal models. (English) Zbl 1221.14018

Given a normal complex projective variety \(X\) with sufficiently mild singularities and pseudoeffective canonical divisor, the theory of the minimal model program predicts:
{-} Existence of minimal models: There exists a a variety \(Y\) birational to \(X\) such that the canonical divisor \(K_Y\) is nef;
{-} Abundance conjecture: \(K_Y\) is semiample, i.e. \(mK_Y\) is base point free for some integer \(m>0\).
If a variety has a minimal model with semiample canonical divisor we say that it has a good minimal model.
In the paper under review the author proves that every \(\mathbb{Q}\)-factorial variety \(X\) with at most terminal singularities admits a good minimal model if \(X\) has Kodaira dimension \(\kappa(X)=0\) and the general fiber of the Albanese morphism has a good minimal model or if \(\kappa(X)\geq 0\) and the general fiber of the Iitaka fibration has a good minimal model. As a corollary the author proves Iitaka’s conjecture C for algebraic fiber spaces \(f\) with general fiber \(F\) such that the general fiber of the Iitaka fibration of \(F\) has a good minimal model, giving in such a way a positive answer to a question posed by S. Mori [in: Algebraic geometry, Proc. Summer Res. Inst., Brunswick/Maine 1985, part 1, Proc. Symp. Pure Math. 46, 269–331 (1987; Zbl 0656.14022)].
The proofs of the main results use many of the techniques introduced in famous work C. Birkar, P. Cascini, C. D. Hacon and J. McKernan [J. Am. Math. Soc. 23, No. 2, 405–468 (2010; Zbl 1210.14019)].

MSC:

14E30 Minimal model program (Mori theory, extremal rays)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bădescu, L.: Algebraic Surfaces, Universitext. Spring, New York (2001). Translated from the 1981 Romanian original by Vladimir Masek and revised by the author
[2] Birkar, C., Cascini, P., Hacon, C., McKernan, J.: Existence of minimal models for varieties of log general type (2006). arXiv:math.AG/0610203 · Zbl 1210.14019
[3] Chen J.A., Hacon C.: On the irregularity of the image of Iitaka fibration. Comm. Algebra 32(1), 203–225 (2004) · Zbl 1137.14008 · doi:10.1081/AGB-120027861
[4] Clemens H., Hacon C.: Deformations of the trivial line bundle and vanishing theorems. Am. J. Math. 111(1), 159–175 (2002) · Zbl 1101.14016
[5] Ein L., Lazarsfeld R.: Singularities of theta divisors and the birational geometry of irregular varieties. J. Am. Math. Soc. 10(1), 243–258 (1997) · Zbl 0901.14028 · doi:10.1090/S0894-0347-97-00223-3
[6] Fujino, O.: Algebraic fiber spaces whose general fibers are of maximal Albanese dimension (2002). arxiv:math.AG/0204262 · Zbl 1084.14035
[7] Fujino, O.: Remarks on algebraic fiber spaces (2002). arxiv:math.AG/0210166 · Zbl 1103.14018
[8] Fujino, O.: On maximal Albanese dimensional varieties (2009). arxiv:math.AG/0911.2851
[9] Green M., Lazarsfeld R.: Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville. Inventiones Math. 90, 389–407 (1987) · Zbl 0659.14007 · doi:10.1007/BF01388711
[10] Green M., Lazarsfeld R.: Higher obstructions to deforming cohomology groups of line bundles. J. Am. Math. Soc. 4(1), 87–103 (1991) · Zbl 0735.14004 · doi:10.1090/S0894-0347-1991-1076513-1
[11] Hacon, C.: A derived category approach to generic vanishing theorems. J. Reine Angew. Math. 575 (2004). arXiv:math.AG/0308195 · Zbl 1137.14012
[12] Kawamata Y.: Characterization of abelian varieties. Compositio Math. 43, 253–276 (1981) · Zbl 0471.14022
[13] Kawamata Y.: Minimal models and the Kodaira dimension of algebraic fiber spaces. J. Reine Angew. Math. 363, 1–46 (1985) · Zbl 0589.14014
[14] Kawamata Y.: Flops connect minimal models. Publ. Res. Inst. Math. Sci. 44(2), 419–423 (2008) · Zbl 1145.14014 · doi:10.2977/prims/1210167332
[15] Kollár J., Mori S.: Birational geometry of algebraic varieties. Cambridge University Press, Cambridge (1998) · Zbl 0926.14003
[16] Kollár J.: Shafarevich maps and plurigenera of algebraic varieties. Inv. Math. 113, 177–215 (1993) · Zbl 0819.14006 · doi:10.1007/BF01244307
[17] Lazarsfeld, R.: Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49. Springer, Berlin (2004). Positivity for vector bundles, and multiplier ideals
[18] Mori, S.: Classification of Higher-Dimensional Varieties, Algebraic Geometry (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., vol. 46, pp. 269–331. American Mathematical Society, Providence (1987)
[19] Mukai S.: Duality between D(X) and $${D(\(\backslash\)hat{X})}$$ with its application to Picard sheaves. Nagoya math. J. 81, 153–175 (1981) · Zbl 0417.14036
[20] Simpson C.: Subspaces of moduli spaces of rank one local systems. Ann. scient. École Norm. Sup. 26, 361–401 (1993) · Zbl 0798.14005
[21] Siu, Y.T.: Abundance conjecture (2009). arXZiv:math.AG/0912.0576
[22] Takayama S.: On uniruled degenerations of algebraic varieties with trivial canonical divisor. Math. Z. 259, 487–501 (2008) · Zbl 1138.14008 · doi:10.1007/s00209-007-0235-z
[23] Ueno, K.: Classification Theory of Algebraic Varieties and Compact Complex Spaces. Springer Lecture Note 439 (1975) · Zbl 0299.14007
[24] Viehweg E.: Weak positivity and the additivity of the Kodaira dimension of certain fiber spaces. Adv. Stud. Pure Math. 1, 329–353 (1983) · Zbl 0513.14019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.