×

A quasilinear eigenvalue problem with Robin conditions on the non-smooth domain of finite measure. (English) Zbl 1202.35149

Summary: We consider a nonlinear eigenvalue problem involving the \(p\)-Laplacian with Robin boundary conditions on a domain of finite measure. We show existence, simplicity and isolation of the principal eigenvalue and regularity results for the corresponding eigenfunction. Furthermore, we establish the link between the Dirichlet and Neumann problems by means of the Robin boundary conditions with variable parameter.

MSC:

35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35J25 Boundary value problems for second-order elliptic equations
35B65 Smoothness and regularity of solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adams, R., Sobolev Spaces. Pure and Appl. Math. 65. New York: Acad. Press 1975. · Zbl 0314.46030
[2] Afrouzi, G. A. and Brown, K. J., On principal eigenvalues for boundary value problems with indefinite weight and Robin boundary conditions. Proc. Amer. Math. Soc. 127 (1999), 125 - 130. · Zbl 0903.35045 · doi:10.1090/S0002-9939-99-04561-X
[3] Afrouzi, G. A. and Khademloo, S., Principal eigenvalues of the p-Laplacian with the boundary condition involving indefinite weight. Wor. J. Mod. Sim. 3 (2007)(4), 299 - 304.
[4] Afrouzi, G. A. and Rasouli, S. H., A remark on the uniqueness of positive solutions for some Dirichlet problems. Nonlin. Anal. 64 (2006), 2773 - 2777. · Zbl 1242.35121 · doi:10.1016/j.na.2005.09.014
[5] Allegretto, E. and Huang, Y. X., A Picone’s identity for the p-Laplacian and applications. Nonlin. Anal. 32 (1998), 819 - 830. P. Drábek and S. H. Rasouli · Zbl 0930.35053 · doi:10.1016/S0362-546X(97)00530-0
[6] Anane, A., Simplicité et isolation de la premi‘ere valeur propre du p-Laplacien avec poids. C. R. Acad. Sci. Paris Ser. I Math. 305 (1987), 725 - 728. · Zbl 0633.35061
[7] Arendt, W. and Warma, M., The Laplacian with Robin boundary conditions on arbitrary domains. Potential Anal. 19 (4) (2003), 341 - 363. · Zbl 1028.31004 · doi:10.1023/A:1024181608863
[8] Atkinson, C. and Champion, C. R., Some boundary value for the equation \nabla (|\nabla \varphi |N ) = 0. Quart. J. Mech. Appl. Math. 37 (1984), 401 - 419. · Zbl 0567.73054 · doi:10.1093/qjmam/37.3.401
[9] Biegert, M., The relative capacity. Preprint, arXiv: 0806.1417. · Zbl 1183.46005
[10] Binding, P. A., Drábek, P. and Huang, Y. X., On the Fredholm alternative for the p-Laplacian. Proc. Amer. Math. Soc. 125 (1997), 3555 - 3559. · Zbl 0882.35049 · doi:10.1090/S0002-9939-97-03992-0
[11] Binding, P. A. and Huang, Y. X., The principal eigencurve for p-Laplacian. Diff. Int. Equ. 8 (1995)(2), 405 - 415. · Zbl 0819.35107
[12] Bonder, J. F. and Rossi, J. D., A nonlinear eigenvalue problem with indefinite weights related to Sobolev trace embedding. Publ. Mat. 46 (2002), 221 - 235. · Zbl 1014.35070 · doi:10.5565/PUBLMAT_46102_12
[13] Cuesta, M., Eigenvalue problems for the p-Laplacian with indefinite weights. Electron. J. Diff. Equ. 2001 (33), 9 pp.[14] Daners, D., Robin boundary value problems on arbitrary domain. Trans. Amer. Math. Soc. 352 (2000), 4207 - 4236.
[14] Daners, D. and Drábek, P., Apriori estimates for a class of quasilinear elliptic equations. Trans. Amer. Math. Soc. 361 (2009), 6475 - 6500. · Zbl 1181.35098 · doi:10.1090/S0002-9947-09-04839-9
[15] Diaz, J. I., Nonlinear Partial Differential Equations and Free Boundaries. Vol. I. Elliptic Equations. Research Notes in Mathematics 106. Boston (MA): Pitman 1985. · Zbl 0595.35100
[16] Drábek, P., The least eigenvalue of nonhomogeneous degenerated quasilinear eigenvalue problems. Math. Bohem. 120 (1995)(2), 169 - 195. · Zbl 0839.35049
[17] Drábek, P. and Manásevich, R., On the closed solution to some nonho- mogeneous eigenvalue problems with p-Laplacian. Diff. Int. Equ. 12 (1999), 773 - 788. · Zbl 1015.34071
[18] Drábek, P. and Robinson, S., Resonance problems for the p-Laplacian. J. Funct. Anal. 169 (1999), 189 - 200. · Zbl 0940.35087 · doi:10.1006/jfan.1999.3501
[19] Gilbarg, D. and Trudinger, N., Elliptic Partial Differential Equations of Second Order. Berlin: Springer 1983. · Zbl 0562.35001
[20] Hess, P. and Kato, T., On some linear and nonlinear eigenvalue problems with indefinite weight function. Comm. Part. Diff. Equ. 5 (1980), 999 - 1030. · Zbl 0477.35075 · doi:10.1080/03605308008820162
[21] Huang, Y. X., On the eigenvalues of the p-Laplacian with varying p. Proc. Amer. Math. Soc. 125 (1997), 3347 - 3354. · Zbl 0882.35087 · doi:10.1090/S0002-9939-97-03961-0
[22] Huang, Y. X., On eigenvalue problems of the p-Laplacian with Neumann boundary conditions. Proc. Amer. Math. Soc. 109 (1990), 177 - 184. · Zbl 0715.35061 · doi:10.2307/2048377
[23] Kawohl, B., Symmetry result for functions yielding best constant in Sobolev- type inequalities. Discrete Contin. Dyn. Syst. 6 (2000), 683 - 690. · Zbl 1157.35342 · doi:10.3934/dcds.2000.6.683
[24] Kufner, A., John, O. and Fu\check cík, S., Function Spaces. Prague and Leyden: Academia and Nordhoff 1977. 485
[25] L\hat e, A., Eigenvalue problems for the p-Laplacian. Nonlin. Anal. 64 (2006), 1057 - 1099. · Zbl 1208.35015 · doi:10.1016/j.na.2005.05.056
[26] Lindqvist, P., On the equation div(|\nabla u|p - 2\nabla u) + \lambda |u|p - 2u = 0. Proc. Amer. Math. Soc. 109 (1990), 157 - 164. · Zbl 0714.35029
[27] Maz’ja, V. G., Sobolev Spaces. Springer Ser. Soviet Mathematics. Berlin: Springer 1985.
[28] Ne\check cas, J., Les méthodes directes en théorie des équations elliptiques. Paris: Masson 1967. · Zbl 1225.35003
[29] \hat Otani, M. and Teshima, T., On the first eigenvalue of some quasilinear elliptic equations. Proc. Japan Acad. Ser. A Math. Sci. 64 (1988), 8 - 10. · Zbl 0662.35080 · doi:10.3792/pjaa.64.8
[30] Pao, C. V., Nonlinear Parabolic and Elliptic Equations. New York: Plenum Press 1992. · Zbl 0777.35001
[31] Philip, J. R., n-diffusion. Austral. J. Phys. 14 (1961), 1 - 13. · Zbl 0137.18402 · doi:10.1071/PH610001
[32] Stavrakakis, N. M. and de Thélin, F., Principal eigenvalues and anti-maximum principle for some quasilinear elliptic equations on RN . Math. Nachr. 212 (2000), 155 - 171. · Zbl 0977.35102 · doi:10.1002/(SICI)1522-2616(200004)212:1<155::AID-MANA155>3.0.CO;2-4
[33] Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equa- tions. J. Diff. Equ. 51 (1983), 126 - 150. · Zbl 0488.35017 · doi:10.1016/0022-0396(84)90105-0
[34] Trudinger, N. S., On Harnack type inequalities and their application to quasi- linear elliptic equations. Comm. Pure Appl. Math. 20 (1967), 722 - 747. · Zbl 0153.42703 · doi:10.1002/cpa.3160200406
[35] Yosida, K., Functional Analysis (6th ed.). Grundlehren Mathem. Wiss. 123. Berlin: Springer 1980. · Zbl 0435.46002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.