×

Lower spectral bounds by Wilson’s brick discretization. (English) Zbl 1198.65220

A nonconforming finite element, the Wilson element, is applied for solving the eigenvalue problem of the Laplace operator in polygonal domains in two and three space dimensions. A relationship between the interpolation weak estimate of the Wilson element and the n-linear element is established. The authors prove that the three-dimensional Wilson’s brick eigenvalues approximate the exact eigenvalues from below, which is claimed to be a new progress for the finite element method. A numerical experiment for the eigenvalues of the Laplace operator in three dimensions, considering a unit cube, shows that the results given by the Wilson’s brick yield indeed lower spectral bounds and thus confirm the theoretical results.

MSC:

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Armentano, M. G.; Duràn, R. G., Asymptotic lower bounds for eigenvalues by nonconforming finite element methods, Electron. Trans. Numer. Anal., 17, 93-101 (2004) · Zbl 1065.65127
[2] Babuška, I.; Osborn, J., Eigenvalue problems, (Ciarlet, P. G.; Lions, J. L., Finite Element Methods (Part 1), Handbook of Numerical Analysis, vol. II (1991), Elsevier (North-Holland): Elsevier (North-Holland) Amsterdam), 640-787 · Zbl 0875.65087
[3] Chatelin, F., Spectral Approximations of Linear Operators (1983), Academic Press: Academic Press New York
[4] Chen, C. M.; Huang, Y. Q., High Accuracy Theory of Finite Element Methods (1995), Hunan Science & Technology Publisher: Hunan Science & Technology Publisher Changsha
[5] Chen, S. H.; Li, B., Superconvergence analysis and error expansion for the Wilson nonconforming finite element, Numer. Math., 69, 125-140 (1994) · Zbl 0818.65098
[6] Chen, Z.; Yang, Y. D., The global stress superconvergence of Wilson’s brick, Numer. Math. J. Chinese Univ., 27, special issue, 301-305 (2005)
[7] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), North-Holland: North-Holland Amsterdam · Zbl 0445.73043
[8] Hu, J.; Huang, Y. Q.; Shen, H. M., The lower approximation of eigenvalue by lumped mass finite element methods, J. Comput. Math., 22, 545-556 (2004) · Zbl 1069.65122
[9] Lesaint, P.; Zlamal, M., Convergence of the nonconforming Wilson element for arbitrary quadrilateral meshes, Numer. Math., 36, 33-52 (1980) · Zbl 0471.65073
[10] Lin, Q.; Lin, J. F., Finite Element Methods: Accuracy and Improvement (2006), Science Press: Science Press Beijing
[11] Lin, Q.; Huang, H. T.; Li, Z. C., New expansions of numerical eigenvalues for \(- \triangle u = \lambda \rho u\) by nonconforming elements, Math. Comp., 77, 2061-2084 (2008) · Zbl 1198.65228
[12] Lin, Q.; Huang, H. T.; Li, Z. C., New expansions of numerical eigenvalues by Wilson’s elements, J. Comput. Appl. Math., 225, 213-226 (2009) · Zbl 1165.65070
[13] Lin, Q.; Yan, N., The Construction and Analysis for Effective Finite Element Methods (1996), Hebei University Publishers: Hebei University Publishers Baoding
[14] Liu, H. P.; Yan, N. N., Four finite element solutions and comparison of problem for the Poisson equation eigenvalue, Chinese J. Numer. Meth. Comput. Appl., 2, 81-91 (2005)
[15] Luo, P.; Lin, Q., High accuracy analysis of the Wilson element, J. Comput. Math., 17, 113-124 (1999) · Zbl 0939.65120
[16] Shi, Z. C., A convergence condition for the quadrilateral Wilson element, Numer. Math., 44, 349-361 (1984) · Zbl 0581.65008
[17] Shi, Z. C., A remark on the optimal order of convergence of Wilson’s nonconforming element, Math. Numer. Sin., 8, 2, 159-163 (1986), (in Chinese) · Zbl 0607.65071
[18] Shi, Z. C.; Jiang, B.; Xue, W. M., A new superconvergence property of Wilson nonconforming finite element, Numer. Math., 78, 259-268 (1997) · Zbl 0897.65063
[19] Shih, T. M.; Liem, C. B.; Yang, Y. D., One direction extrapolation of finite element for elliptic problem on \(n\)-dimensional rectangular area, Numer. Math. J. Chinese Univ., 18, 2, 122-134 (1996) · Zbl 0857.65119
[20] Strang, G.; Fix, G. J., An Analysis of the Finite Element Method (1973), Prentice-Hall: Prentice-Hall Englewood Cliffs, New Jersey · Zbl 0278.65116
[21] Wilson, E. L.; Taylor, R. L.; Doherty, W. P.; Ghaboussi, J., Incompatible displacement methods, (Fenves, S. J., Numerical and Computer Methods in Structural Mechanics (1973), Academic Press: Academic Press New York)
[22] Yang, Y. D., Superconvergence and a posteriori error estimate of the nonconforming Wilson finite element method for eigenvalue problems, J. Math., 19, 2, 143-147 (1999), (in Chinese) · Zbl 0937.65112
[23] Yang, Y. D., A posteriori error estimates in Adini finite element for eigenvalue problems, J. Comput. Math., 18, 413-418 (2000) · Zbl 0957.65092
[24] Yang, Y. D.; Chen, Z., The order preserving convergence for spectral approximation of self-adjoint completely continuous operators, Sci. China Ser. A, 51, 1232-1242 (2008) · Zbl 1153.65055
[25] Yang, Y. D.; Li, Q.; Li, S. R., Nonconforming finite element approximations of the Steklov eigenvalue problem, Appl. Numer. Math., 59, 2388-2401 (2009) · Zbl 1190.65168
[26] Yang, Y. D., Two-grid discretization schemes of the nonconforming FEM for eigenvalue problems, J. Comput. Math., 27, 748-763 (2009) · Zbl 1212.65438
[27] Yang, Y. D.; Zhang, Z.; Lin, F. B., Eigenvalue approximation from below using nonforming finite elements, Sci. China Math., 53, 1, 137-150 (2010) · Zbl 1187.65125
[28] Zhang, Z., Analysis of some quadrilateral nonconforming element for incompressible elasticity, SIAM J. Numer. Anal., 34, 640-663 (1997) · Zbl 0870.73074
[29] Zhang, Z.; Zhang, S., Wilson’s element for the Reissner-Mindlin plate, Comput. Methods Appl. Mech. Engrg., 113, 55-65 (1994) · Zbl 0847.73070
[30] Zhang, Z.; Yang, Y. D.; Chen, Z., Eigenvalue approximation from below by Wilson’s element, Chinese J. Numer. Math. Appl., 29, 4, 81-84 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.