×

Asymptotics and numerics of polynomials used in Tricomi and Buchholz expansions of Kummer functions. (English) Zbl 1195.65025

Summary: Expansions in terms of Bessel functions are considered of the Kummer function \(_{1} F _{1}(a; c, z)\) (or confluent hypergeometric function) as given by F. Tricomi [Ann. Mat. Pura Appl., IV. Ser. 26, 141–175 (1947; Zbl 0034.33704)] and H. Buchholz [The confluent hypergeometric function with special emphasis on its applications. Berlin-Heidelberg-New York: Springer-Verlag (1969; Zbl 0169.08501)]. The coefficients of these expansions are polynomials in the parameters of the Kummer function and the asymptotic behavior of these polynomials for large degree is given. Tables are given to show the rate of approximation of the asymptotic estimates. The numerical performance of the expansions is discussed together with the numerical stability of recurrence relations to compute the polynomials. The asymptotic character of the expansions is explained for large values of the parameter \(a\) of the Kummer function.

MSC:

65D20 Computation of special functions and constants, construction of tables
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Abad J., Sesma J.: Buchholz polynomials: a family of polynomials relating solutions of confluent hypergeometric and Bessel equations. J. Comput. Appl. Math. 101(1–2), 237–241 (1999) · Zbl 0940.33001 · doi:10.1016/S0377-0427(99)00226-5
[2] Abad J., Sesma J.: A new expansion of the confluent hypergeometric function in terms of modified Bessel functions. J. Comput. Appl. Math. 78(1), 97–101 (1997) · Zbl 0931.33002 · doi:10.1016/S0377-0427(96)00133-1
[3] Abramowitz M., Stegun I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, vol 55 of National Bureau of Standards Applied Mathematics Series. U.S. Government Printing Office, Washington (1964) · Zbl 0171.38503
[4] Buchholz, H.: The Confluent Hypergeometric Function with Special Emphasis on Its Applications. Translated from the German by Lichtblau, H., Wetzel, K. Springer Tracts in Natural Philosophy, vol. 15. Springer, New York (1969) · Zbl 0169.08501
[5] Chiccoli C., Lorenzutta S., Maino G.: A note on a Tricomi expansion for the generalized exponential integral and related functions. Nuovo Cimento B (11) 103(5), 563–568 (1989) · Zbl 0751.65010 · doi:10.1007/BF02753139
[6] Gil A., Segura J., Temme N.M.: Numerical Methods for Special Functions. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2007) · Zbl 1144.65016
[7] Kreuser, P.: Über das Verhalten der Integrale homogener linearer Differenzengleichungen im Unendlichen. PhD thesis, Diss. Tübingen, 48S (1914) · JFM 45.0503.01
[8] López J.L., Temme N.M.: Two-point Taylor expansions of analytic functions. Stud. Appl. Math. 109(4), 297–311 (2002) · Zbl 1141.30300 · doi:10.1111/1467-9590.00225
[9] López, J.L., Temme, N.M.: Multi-point Taylor expansions of analytic functions. Trans. Amer. Math. Soc. 356(11), 4323–4342 (electronic) (2004) · Zbl 1047.30002
[10] López J.L., Temme N.M.: Large degree asymptotics of generalized Bernoulli and Euler polynomials. J. Math. Anal. Appl. 363(1), 197–208 (2010) · Zbl 1213.11051 · doi:10.1016/j.jmaa.2009.08.034
[11] Maino G., Menapace E., Ventura A.: Computation of parabolic cylinder functions by means of a Tricomi expansion. J. Comput. Phys. 40(2), 294–304 (1981) · Zbl 0466.65016 · doi:10.1016/0021-9991(81)90211-4
[12] Olver, F.W.J.: Asymptotics and Special Functions. AKP Classics. A K Peters Ltd., Wellesley (1997). Reprint, with corrections, of original Academic Press edition (1974) · Zbl 0303.41035
[13] Slater L.J.: Confluent Hypergeometric Functions. Cambridge University Press, New York (1960) · Zbl 0086.27502
[14] Temme N.M.: Special Functions. An Introduction to the Classical Functions of Mathematical Physics. A Wiley-Interscience Publication. Wiley, New York (1996) · Zbl 0856.33001
[15] Tricomi F.: Sulle funzioni ipergeometriche confluenti. Ann. Mat. Pura Appl. (4) 26, 141–175 (1947) · Zbl 0034.33704 · doi:10.1007/BF02415375
[16] Wong, R.: Asymptotic Approximations of Integrals, vol. 34 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Corrected reprint of the 1989 original (2001) · Zbl 1078.41001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.