×

Natural principal connections on the principal gauge prolongation of a principal bundle. (English) Zbl 1195.53040

For a principal bundle \(P\) over a manifold \(M\) with structure group \(G\) and an integer \(r\), one can form the \(r\)-th principal prolongation \(W^rP\), which essentially consists of \(r\)-jets of local principal bundle charts. This is a principal bundle with structure group the \(r\)-th prolongation \(W^r_mG\), where \(m\) is the dimension of \(M\).
The aim of this article is to determine all ways to naturally associate a principal connection on \(W^rP\) to a principal connection on \(P\) and an affine connection on \(M\). Using the Utiyama theorem, the authors arrive at a description of such connections for general \(r\) in terms of a number of tensor fields depending naturally on the two given connections. They also give a description of such tensor fields in terms of Ad-invariant elements in \(\mathfrak g\) and Ad-equivariant linear maps \(\mathfrak g\to\mathfrak g\), where \(\mathfrak g\) denotes the Lie algebra of the structure group \(G\). For \(r=1\) and \(r=2\), the classification is carried out completely. Finally, the Ad-invariant elements and Ad-equivariant linear maps needed in the description are determined in the case \(\mathfrak g=\mathfrak{gl}(n,\mathbb R)\).
Reviewer: Andreas Cap (Wien)

MSC:

53C05 Connections (general theory)
53A55 Differential invariants (local theory), geometric objects
53C10 \(G\)-structures
58A20 Jets in global analysis
58A32 Natural bundles
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bourbaki, N., Groupes et algebres de Lie (1972), Hermann: Hermann Paris · Zbl 0244.22007
[2] M. Doupovec and W. M. Mikulski: Reduction theorems for principal and classical connections, to appear in Acta Mathematica Sinica.; M. Doupovec and W. M. Mikulski: Reduction theorems for principal and classical connections, to appear in Acta Mathematica Sinica. · Zbl 1186.53036
[3] Doupovec, M.; Mikulski, W. M., Holonomic extensions of connections and symmetrization of jets, Rep. Math. Phys., 60, 299-316 (2007) · Zbl 1160.58001
[4] Doupovec, M.; Mikulski, W. M., Gauge natural constructions on higher order principal prolongations, Ann. Polonici Mathematici, 92, 87-97 (2007) · Zbl 1133.58001
[5] Eck, D. J., Gauge-natural bundles and generalized gauge theories, Mem. Amer. Math. Soc., 33, No. 247 (1981) · Zbl 0493.53052
[6] Fatibene, L.; Francaviglia, M., (Natural and Gauge Natural Formalism for Classical Field Theories (2003), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht/Boston/London) · Zbl 1138.81303
[7] Fatibene, L.; Francaviglia, M.; Palese, M., Conservation laws and variational sequences in gauge-natural theories, Math. Proc. Camb. Phil. Soc., 130, 555-569 (2001) · Zbl 0988.58006
[8] Ferraris, M.; Francaviglia, M.; Palese, M.; Winterroth, E., Canonical connections in gauge-natural field theories, Int. J. Geom. Methods Mod. Phys., 5, 6, 973-988 (2008) · Zbl 1175.58006
[9] Francaviglia, M.; Palese, M.; Winterroth, E., Second variational derivative of gauge-natural invariant Lagrangians and conservation laws, (Bureš, J.; etal., Differential Geometry and its Applications, Conf. Proc. Differential Geometry and its Applications, Conf. Proc, Aug 30 -Sep 3, 2004 Prague (Czech Republic) (2005), Matfyz Press), 591-604 · Zbl 1109.58005
[10] Janyška, J., On the curvature of tensor product connections and covariant differentials, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II,, 72, 135-143 (2004) · Zbl 1051.53017
[11] Janyška, J., Reduction theorems for general linear connections, Diff. Geom. Appl., 20, 177-196 (2004) · Zbl 1108.53016
[12] Janyška, J., Higher order valued reduction theorems for classical connections, Cent. Eur. J. Math., 3, 294-308 (2005) · Zbl 1114.53018
[13] Janyška, J., Higher order Utiyama-like theorem, Rep. Math. Phys., 58, 93-118 (2006) · Zbl 1126.53016
[14] Janyška, J., Higher order Utiyama invariant interaction, Rep. Math. Phys., 59, 63-81 (2007)
[15] Kolář, I., Some natural operators in differential geometry, (Differential Geometry and Its Applications, Proceedings (1987), D. Reidel), 91-110
[16] Kolář, I., Connections on higher order frame bundles and their gauge analogies, (honour of Demeter Krupka’s sixty-fifth birthday (2008), Nova Science Publishers), 199-223
[17] I. Kolář: On the gauge version of exponential map, to appear in Rep. Math. Phys.; I. Kolář: On the gauge version of exponential map, to appear in Rep. Math. Phys.
[18] Kolář, I.; Virsik, G., Connections in first principal prolongations, Suppl. ai Rendiconti del Circolo Matematico di Palermo, 43, Serie II, 163-171 (1996) · Zbl 0911.53012
[19] Kolář, I.; Michor, P. W.; Slovak, J., (Natural Operations in Differential Geometry (1993), Springer) · Zbl 0782.53013
[20] Krupka, D.; Janyška, J., (Lectures on Differential Invariants (1990), Folia Fac. Sci. Nat. Univ. Purkynianae Brunensis: Folia Fac. Sci. Nat. Univ. Purkynianae Brunensis Brno)
[21] Lubczonok, G., On reduction theorems, Ann. Polon. Math., 26, 125-133 (1972) · Zbl 0244.53011
[22] Mikulski, W. M., Higher order linear connections from first order ones, Arch. Math (Brno), 43, 4, 285-288 (2007) · Zbl 1164.58001
[23] Nijenhuis, A., Natural bundles and their general properties, Diff. Geom., In honour of K. Yano, Kinokuniya, Tokyo, 317-334 (1972)
[24] Schouten, J. A., Ricci Calculus, Berlin-Göttingen (1954)
[25] Terng, C. L., Natural vector bundles and natural differential operators, Am. J. Math., 100, 775-828 (1978) · Zbl 0422.58001
[26] Vašík, P., Connections on higher order principal prolongations, Rend. Circ. Mat. Palermo, 2, Suppl. No. 79, 183-192 (2006) · Zbl 1118.53016
[27] Vondra, J., Classification of principal connections naturally induced on \(W^2\) PE, Arch. Math. (Brno), 44, 5, 535-547 (2008) · Zbl 1212.53040
[28] Vondra, J., Classification of principal connections on \(W^r\) PE, (Geometric Methods in Physics, Proc. Conf. Jun 29 - Jul 05, 2008 Białowieza (Poland), AIP Conference Proceedings, 1079 (2008)), 180-186 · Zbl 1184.53031
[29] Utiyama, R., Invariant theoretical interpretation of interaction, Phys. Rev., 101, 1597-1607 (1956) · Zbl 0070.22102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.