×

Integrating inconsistent data in a probabilistic model. (English) Zbl 1185.68699

Summary: In this paper we discuss the process of building a joint probability distribution from an input set of low-dimensional probability distributions. Since the solution of the problem for a consistent input set of probability distributions is known we concentrate on a setup where the input probability distributions are inconsistent. In this case the iterative proportional fitting procedure, which converges in the consistent case, tends to come to cycles. We propose a new algorithm that converges even in inconsistent case. The important property of the algorithm is that it can be efficiently implemented exploiting decomposability of considered distributions.

MSC:

68T35 Theory of languages and software systems (knowledge-based systems, expert systems, etc.) for artificial intelligence
68Q87 Probability in computer science (algorithm analysis, random structures, phase transitions, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] ČENCOV N. N., Translations of Mathematical Monographs (1982)
[2] DOI: 10.1214/aop/1176996454 · Zbl 0318.60013 · doi:10.1214/aop/1176996454
[3] DOI: 10.1214/aoms/1177731829 · Zbl 0024.05502 · doi:10.1214/aoms/1177731829
[4] DEMPSTER A. P., J. Roy. Statist. Soc. Ser. B 39 pp 1– (1977)
[5] FRECHET M., Ann. Univ. Lyon Sect. A, Series 3 14 pp 53– (1951)
[6] HÁJEK P., Uncertain Information Processing in Expert Systems (1992)
[7] HOEFFDING , W. 1940. Masstabinvariante Korrelationstheorie, Vol. 5, 179–233. Schriften des mathematischen Instituts und des Instituts für angewandte Mathematik der Universität Berlin.
[8] DOI: 10.1103/PhysRev.106.620 · Zbl 0084.43701 · doi:10.1103/PhysRev.106.620
[9] JENSEN F. V., Computational Statistics Quarterly 4 pp 269– (1990)
[10] JIROUŠEK R., Kybernetika 27 (5) pp 403– (1991)
[11] DOI: 10.1016/0167-9473(93)E0055-9 · Zbl 0875.65122 · doi:10.1016/0167-9473(93)E0055-9
[12] DOI: 10.1007/978-1-4899-1424-8_18 · doi:10.1007/978-1-4899-1424-8_18
[13] DOI: 10.1109/TIT.1983.1056747 · Zbl 0532.94004 · doi:10.1109/TIT.1983.1056747
[14] DOI: 10.1007/BF00534912 · Zbl 0126.34003 · doi:10.1007/BF00534912
[15] DOI: 10.1214/aoms/1177729694 · Zbl 0042.38403 · doi:10.1214/aoms/1177729694
[16] DOI: 10.1137/0304035 · Zbl 0199.21301 · doi:10.1137/0304035
[17] DOI: 10.1016/0167-9473(93)E0056-A · Zbl 0875.62237 · doi:10.1016/0167-9473(93)E0056-A
[18] LAURITZEN S. L., Graphical Models (1996) · Zbl 0907.62001
[19] DOI: 10.1006/obhd.1996.2668 · doi:10.1006/obhd.1996.2668
[20] DOI: 10.1016/0888-613X(90)90020-3 · Zbl 0697.68089 · doi:10.1016/0888-613X(90)90020-3
[21] DOI: 10.1002/j.1538-7305.1948.tb01338.x · Zbl 1154.94303 · doi:10.1002/j.1538-7305.1948.tb01338.x
[22] DOI: 10.1109/TIT.1980.1056144 · Zbl 0429.94011 · doi:10.1109/TIT.1980.1056144
[23] VOMLEL J., Methods of Probabilistic Knowledge Integration (1999)
[24] DOI: 10.1137/1107014 · doi:10.1137/1107014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.