×

The zero locus of an admissible normal function. (English) Zbl 1184.32004

One of the deepest results in support of the Hodge conjecture is the algebraicity of the Hodge loci, proved in a fundamental paper of E. Cattani, P. Deligne and A. Kaplan [J. Am. Math. Soc. 8, No. 2, 483–506 (1995; Zbl 0851.14004)]. M. Green and P. Griffiths conjectured a similar behaviour for the zero locus of an admissible normal function (a definition of admissible normal function can be found in: [M. Saito, J. Algebr. Geom. 5, No. 2, 235–276 (1996; Zbl 0918.14018)]).
In the paper under review, it is proved that the zero locus of an admissible normal function over an algebraic curve is algebraic. The central idea is that a normal function vanishes at a point if and only if the canonical real grading of the corresponding mixed Hodge structure at the same point is integral. The main ingredients of the proof are Deligne’s results and Pearlstein’s \(\text{SL}_2\)-orbit theorem [G. Pearlstein, J. Differ. Geom. 74, No. 1, 1–67 (2006; Zbl 1107.14010); see also K. Kato, C. Nakayama and S. Usui; J. Algebr. Geom. 17, No. 3, 401–479 (2008; Zbl 1144.14005) for a several variable \(\text{SL}_2\)-orbit theorem with arbitrary weight filtration)].

MSC:

32G20 Period matrices, variation of Hodge structure; degenerations
14D07 Variation of Hodge structures (algebro-geometric aspects)
14D05 Structure of families (Picard-Lefschetz, monodromy, etc.)
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] N. Bourbaki, Éléments de mathématique. Fasc. XXXVII. Groupes et algèbres de Lie. Chapitre II: Algèbres de Lie libres. Chapitre III: Groupes de Lie, Paris: Hermann, 1972. · Zbl 0244.22007
[2] E. Cattani, A. Kaplan, and W. Schmid, ”Degeneration of Hodge structures,” Ann. of Math., vol. 123, iss. 3, pp. 457-535, 1986. · Zbl 0617.14005 · doi:10.2307/1971333
[3] H. Clemens, ”The Néron model for families of intermediate Jacobians acquiring “algebraic” singularities,” Inst. Hautes Études Sci. Publ. Math., vol. 58, pp. 5-18 (1984), 1983. · Zbl 0529.14025
[4] P. Deligne, Letter to E. Cattani and A. Kaplan, 1993.
[5] P. Deligne, ”Théorie de Hodge, II,” Inst. Hautes Études Sci. Publ. Math., vol. 40, pp. 5-57, 1971. · Zbl 0219.14007 · doi:10.1007/BF02684692
[6] M. Kashiwara, ”A study of variation of mixed Hodge structure,” Publ. Res. Inst. Math. Sci., vol. 22, iss. 5, pp. 991-1024, 1986. · Zbl 0621.14007 · doi:10.2977/prims/1195177264
[7] K. Kato, C. Nakayama, and S. Usui, ”\({ SL}(2)\)-orbit theorem for degeneration of mixed Hodge structure,” J. Algebraic Geom., vol. 17, iss. 3, pp. 401-479, 2008. · Zbl 1144.14005 · doi:10.1090/S1056-3911-07-00486-9
[8] A. Kaplan and G. Pearlstein, ”Singularities of variations of mixed Hodge structure,” Asian J. Math., vol. 7, iss. 3, pp. 307-336, 2003. · Zbl 1076.14018
[9] G. Pearlstein, ”\({ SL}_2\)-orbits and degenerations of mixed Hodge structure,” J. Differential Geom., vol. 74, iss. 1, pp. 1-67, 2006. · Zbl 1107.14010
[10] G. J. Pearlstein, ”Variations of mixed Hodge structure, Higgs fields, and quantum cohomology,” Manuscripta Math., vol. 102, iss. 3, pp. 269-310, 2000. · Zbl 0973.32008 · doi:10.1007/PL00005852
[11] M. Saito, ”Admissible normal functions,” J. Algebraic Geom., vol. 5, iss. 2, pp. 235-276, 1996. · Zbl 0918.14018
[12] J. Steenbrink and S. Zucker, ”Variation of mixed Hodge structure, I,” Invent. Math., vol. 80, iss. 3, pp. 489-542, 1985. · Zbl 0626.14007 · doi:10.1007/BF01388729
[13] S. Usui, ”Variation of mixed Hodge structure arising from family of logarithmic deformations. II: Classifying space,” Duke Math. J., vol. 51, iss. 4, pp. 851-875, 1984. · Zbl 0558.14005 · doi:10.1215/S0012-7094-84-05137-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.