×

Hedonic price equilibria, stable matching, and optimal transport: Equivalence, topology, and uniqueness. (English) Zbl 1183.91056

Summary: Hedonic pricing with quasi-linear preferences is shown to be equivalent to stable matching with transferable utilities and a participation constraint, and to an optimal transportation (Monge-Kantorovich) linear programming problem. Optimal assignments in the latter correspond to stable matchings, and to hedonic equilibria. These assignments are shown to exist in great generality; their marginal indirect payoffs with respect to agent type are shown to be unique whenever direct payoffs vary smoothly with type. Under a generalized Spence-Mirrlees condition (also known as a twist condition) the assignments are shown to be unique and to be pure, meaning the matching is one-to-one outside a negligible set. For smooth problems set on compact, connected type spaces such as the circle, there is a topological obstruction to purity, but we give a weaker condition still guaranteeing uniqueness of the stable match.

MSC:

91B24 Microeconomic theory (price theory and economic markets)
91B68 Matching models
90B06 Transportation, logistics and supply chain management
90C05 Linear programming
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Ahmad, N.: The geometry of shape recognition via a Monge–Kantorovich optimal transport problem. PhD thesis, Brown University (2004)
[2] Ahmad, N., Kim, H.K., McCann, R.J.: External doubly stochastic measures and optimal transportation (2009). Preprint at www.math.toronto.edu/mccann
[3] Anderson E.J., Nash P.: Linear Programming in Infinite-Dimensional Spaces. Wiley, Chichester (1987) · Zbl 0632.90038
[4] Brenier Y.: The dual least action problem for an ideal, incompressible fluid. Arch Ration Mech Anal 122, 323–351 (1993) · Zbl 0797.76006
[5] Caffarelli, L.A., McCann, R.J.: Free boundaries in optimal transport and Monge-Ampère obstacle problems. Ann Math (2) to appear (2009) · Zbl 1196.35231
[6] Carlier G.: Duality and existence for a class of mass transportation problems and economic applications. Adv Math Econ 5, 1–21 (2003) · Zbl 1176.90409
[7] Carlier, G., Ekeland, I.: Matching for teams. Econ Theory, this volume (2009) · Zbl 1183.91112
[8] Dudley R.M.: Real Analysis and Probability. Revised reprint of the 1989 original. Cambridge University Press, Cambridge (2002)
[9] Ekeland I.: An optimal matching problem. Control Optim Calc Var 11(1), 57–71 (2005) · Zbl 1106.49054
[10] Ekeland, I.: Existence, uniqueness and efficiency of equilibrium in hedonic markets with multidimensional types. Econ Theory, this volume (2009) · Zbl 1203.91153
[11] Gangbo, W.: (1995) Habilitation thesis. Université de Metz
[12] Gangbo W., McCann R.J.: The geometry of optimal transportation. Acta Math 177, 113–161 (1996) · Zbl 0887.49017
[13] Gangbo W., McCann R.J.: Shape recognition via Wasserstein distance. Q Appl Math 58, 705–737 (2000) · Zbl 1039.49038
[14] Gangbo W., Świȩch A.: Optimal maps for the multidimensional Monge–Kantorovich problem. Commun Pure Appl Math 51, 23–45 (1998) · Zbl 0889.49030
[15] Gretsky N.E., Ostroy J.M., Zame W.R.: The nonatomic assignment model. Econ Theory 2, 103–127 (1992) · Zbl 0808.90021
[16] Gretsky N.E., Ostroy J.M., Zame W.R.: Perfect competition in the continuous assignment model. J Econ Theory 88, 60–118 (1999) · Zbl 0976.91025
[17] Heckman, J.J., Matzkin, R., Nesheim, L.P.: Nonparametric estimation of nonadditive hedonic models. CEMMAP Working Paper CWP03/05 (2005) · Zbl 1200.91252
[18] Hestir K., Williams S.C.: Supports of doubly stochastic measures. Bernoulli 1, 217–243 (1995) · Zbl 0844.60002
[19] Hildenbrand W.: Core and Equilibria of a Large Economy. Princeton University Press, Princeton (1974) · Zbl 0351.90012
[20] Kantorovich L.: On the translocation of masses. CR (Doklady) Acad Sci URSS (NS) 37, 199–201 (1942) · Zbl 0061.09705
[21] Kellerer H.G.: Duality theorems for marginal problems. Z Wahrsch Verw Gebiete 67, 399–432 (1984) · Zbl 0535.60002
[22] Kim, Y.-H., McCann, R.J.: Continuity, curvature, and the general covariance of optimal transportation. J Eur Math Soc (JEMS), to appear (2009)
[23] Ma X.-N., Trudinger N., Wang X.-J.: Regularity of potential functions of the optimal transportation problem. Arch Ration Mech Anal 177, 151–183 (2005) · Zbl 1072.49035
[24] McCann R.J.: Existence and uniqueness of monotone measure-preserving maps. Duke Math J 80, 309–323 (1995) · Zbl 0873.28009
[25] McCann R.J.: Exact solutions to the transportation problem on the line. R Soc Lond Proc Ser A Math Phys Eng Sci 455, 1341–1380 (1999) · Zbl 0947.90010
[26] Monge, G.: Mémoire sur la théorie des déblais et de remblais. Histoire de l’ Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique pour la même année, pp. 666–704 (1781)
[27] Nürnberger G.: Approximation by Spline Functions. Springer, Berlin (1980)
[28] Plakhov A.Yu.: Exact solutions of the one-dimensional Monge–Kantorovich problem (Russian). Mat Sb 195, 57–74 (2004) · Zbl 1080.49030
[29] Rachev S.T., Rüschendorf L.: Mass Transportation Problems. Probability Applications. Springer, New York (1998)
[30] Roth A., Sotomayor M.: Two-sided Matching: A study in Game-theoretic Modeling and Analysis. Econometric Society Monograph Series. Cambridge University Press, Cambridge (1990) · Zbl 0726.90003
[31] Shapley L.S., Shubik M.: The assignment game I: The core. Int J Game Theory 1, 111–130 (1972) · Zbl 0236.90078
[32] Smith C, Knott M: On Hoeffding-Fréchet bounds and cyclic monotone relations. J Multivar Anal 40, 328–334 (1992) · Zbl 0745.62055
[33] Tinbergen J.: On the theory of income distribution. Weltwirtschaftliches Archiv 77, 155–173 (1956)
[34] Uckelmann L.: Optimal couplings between onedimensional distributions. In: Beneš, V., Štěpán, J. (eds) Distributions with Given Marginals and Moment Problems, pp. 261–273. Kluwer Academic Publishers, Dordrecht (1997) · Zbl 0907.60004
[35] Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence (2003) · Zbl 1106.90001
[36] Villani, C.: Cours d’Intégration et Analyse de Fourier (2006). Preprint at http://www.umpa.ens-lyon.fr/\(\sim\)cvillani/Cours/iaf-2006.html
[37] Villani C.: Optimal transport. Old and new. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 338. Springer, Berlin (2009) · Zbl 1156.53003
[38] von Neumann, J.: A certain zero-sum two-person game equivalent to the optimal assignment problem. In: Contributions to the Theory of Games, vol. 2, pp. 5–12. Princeton University Press, Princeton (1953) · Zbl 0050.14105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.