×

Spectral gaps in Wasserstein distances and the 2D stochastic Navier-Stokes equations. (English) Zbl 1173.37005

The authors develop a general method to prove the existence of spectral gaps for Markov semigroups on Banach spaces. A key point is the norm, in which convergence to the invariant measure is established. It involves the derivative of the observable as well and hence can be seen as a type of 1-Wasserstein distance. To be more precise, the observables are measured by a weighted \(W^{1,\infty}\)-norm. This turns out to be a suitable approach for infinite-dimensional spaces where the usual Harris or Döblin conditions, which are geared toward total variation convergence, often fail to hold.
The results are based on “gradient estimates”, i.e., bounds on the derivative of the semigroup, that involve derivatives of the observables. Bounds of this type were established by M. Hairer and J. C. Mattingly [Ann. Math. (2) 164, No. 3, 993–1032 (2006; Zbl 1130.37038)], in order to introduce the asymptotic strong Feller property.
In the first part of this paper semigroups are considered with a uniform behavior which one can view as the analog of Döblin’s condition. In the second part the behavior is not so uniform, but the system has a suitable Lyapunov structure, leading to a type of Harris condition.
The general results are applied to the two-dimensional stochastic Navier-Stokes equations in vorticity form, even in situations where the forcing is extremely degenerate. It is shown that the invariant measure depends continuously on the viscosity and the structure of the forcing.

MSC:

37A30 Ergodic theorems, spectral theory, Markov operators
37A25 Ergodicity, mixing, rates of mixing
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
76D05 Navier-Stokes equations for incompressible viscous fluids
37H10 Generation, random and stochastic difference and differential equations
35R60 PDEs with randomness, stochastic partial differential equations

Citations:

Zbl 1130.37038
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Agrachëv, A. A. and Sarychev, A. V. (2004). Controllability for the Navier-Stokes equation with small control. Dokl. Akad. Nauk 394 727-730. · Zbl 1123.93020
[2] Agrachev, A. A. and Sarychev, A. V. (2005). Navier-Stokes equations: Controllability by means of low modes forcing. J. Math. Fluid Mech. 7 108-152. · Zbl 1075.93014 · doi:10.1007/s00021-004-0110-1
[3] Bakhtin, Y. and Mattingly, J. C. (2007). Malliavin calculus for infinite-dimensional systems with additive noise. J. Funct. Anal. 249 307-353. · Zbl 1130.60063 · doi:10.1016/j.jfa.2007.02.011
[4] Bakry, D. and Émery, M. (1985). Diffusions hypercontractives. In Séminaire de Probabilités XIX , 1983/84. Lecture Notes in Math. 1123 177-206. Springer, Berlin. · Zbl 0561.60080 · doi:10.1007/BFb0075847
[5] Bricmont, J., Kupiainen, A. and Lefevere, R. (2001). Ergodicity of the 2D Navier-Stokes equations with random forcing. Comm. Math. Phys. 224 65-81. Dedicated to Joel L. Lebowitz. · Zbl 0994.60066 · doi:10.1007/s002200100510
[6] Bricmont, J., Kupiainen, A. and Lefevere, R. (2002). Exponential mixing of the 2D stochastic Navier-Stokes dynamics. Comm. Math. Phys. 230 87-132. · Zbl 1033.76011 · doi:10.1007/s00220-002-0708-1
[7] Constantin, P. and Foias, C. (1988). Navier-Stokes Equations. Chicago Lectures in Mathematics . Univ. of Chicago Press, Chicago, IL. · Zbl 0687.35071
[8] Da Prato, G. and Zabczyk, J. (1992). Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications 44 . Cambridge Univ. Press, Cambridge. · Zbl 0761.60052 · doi:10.1017/CBO9780511666223
[9] Da Prato, G. and Zabczyk, J. (1996). Ergodicity for Infinite Dimensional Systems . Cambridge Univ. Press, Cambridge. · Zbl 0849.60052 · doi:10.1017/CBO9780511662829
[10] Davies, E. B. (1980). One-Parameter Semigroups. London Mathematical Society Monographs 15 . Academic Press [Harcourt Brace Jovanovich Publishers], London. · Zbl 0457.47030
[11] Doeblin, W. (1937). Sur les propriétés asymptotiques de mouvement régis par certains types de chaînes simples. Bull. Math. Soc. Roum. Sci. 39 57-115. · JFM 63.1077.03
[12] Doob, J. L. (1948). Asymptotic properties of Markoff transition prababilities. Trans. Amer. Math. Soc. 63 393-421. JSTOR: · Zbl 0041.45406 · doi:10.2307/1990566
[13] E, W. and Mattingly, J. C. (2001). Ergodicity for the Navier-Stokes equation with degenerate random forcing: Finite-dimensional approximation. Comm. Pure Appl. Math. 54 1386-1402. · Zbl 1024.76012 · doi:10.1002/cpa.10007
[14] E, W., Mattingly, J. C. and Sinai, Y. (2001). Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation. Comm. Math. Phys. 224 83-106. Dedicated to Joel L. Lebowitz. · Zbl 0994.60065 · doi:10.1007/s002201224083
[15] Eckmann, J.-P. and Hairer, M. (2001). Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise. Comm. Math. Phys. 219 523-565. · Zbl 0983.60058 · doi:10.1007/s002200100424
[16] Fayolle, G., Malyshev, V. A. and Menshikov, M. V. (1995). Topics in the Constructive Theory of Countable Markov Chains . Cambridge Univ. Press, Cambridge. · Zbl 0823.60053
[17] Flandoli, F. and Maslowski, B. (1995). Ergodicity of the 2-D Navier-Stokes equation under random perturbations. Comm. Math. Phys. 172 119-141. · Zbl 0845.35080 · doi:10.1007/BF02104513
[18] Foiaş, C. and Prodi, G. (1967). Sur le comportement global des solutions nonstationnaires des équations de Navier-Stokes en dimension 2. Rend. Sem. Mat. Univ. Padova 39 1-34. · Zbl 0176.54103
[19] Goldys, B. and Maslowski, B. (2005). Exponential ergodicity for stochastic Burgers and 2D Navier-Stokes equations. J. Funct. Anal. 226 230-255. · Zbl 1078.60049 · doi:10.1016/j.jfa.2004.12.009
[20] Hairer, M. (2002). Exponential mixing properties of stochastic PDEs through asymptotic coupling. Probab. Theory Related Fields 124 345-380. · Zbl 1032.60056 · doi:10.1007/s004400200216
[21] Hairer, M. and Mattingly, J. C. (2006). Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing. Ann. of Math. ( 2 ) 164 993-1032. · Zbl 1130.37038 · doi:10.4007/annals.2006.164.993
[22] Harris, T. E. (1956). The existence of stationary measures for certain Markov processes. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability 1954-1955 II 113-124. Univ. California Press, Berkeley. · Zbl 0072.35201
[23] Hennion, H. (1993). Sur un théorème spectral et son application aux noyaux Lipchitziens. Proc. Amer. Math. Soc. 118 627-634. · Zbl 0772.60049 · doi:10.2307/2160348
[24] Hörmander, L. (1967). Hypoelliptic second order differential equations. Acta Math. 119 147-171. · Zbl 0156.10701 · doi:10.1007/BF02392081
[25] Huang, J., Kontoyiannis, I. and Meyn, S. P. (2002). The ODE method and spectral theory of Markov operators. In Stochastic Theory and Control ( Lawrence, KS, 2001 ). Lecture Notes in Control and Inform. Sci. 280 205-221. Springer, Berlin. · Zbl 1038.60064 · doi:10.1007/3-540-48022-6_15
[26] Ionescu Tulcea, C. T. and Marinescu, G. (1950). Théorie ergodique pour des classes d’opérations noncomplètement continues. Ann. of Math. ( 2 ) 52 140-147. · Zbl 0040.06502 · doi:10.2307/1969514
[27] Kuksin, S. and Shirikyan, A. (2001). Ergodicity for the randomly forced 2D Navier-Stokes equations. Math. Phys. Anal. Geom. 4 147-195. · Zbl 1013.37046 · doi:10.1023/A:1011989910997
[28] Kuksin, S. and Shirikyan, A. (2001). A coupling approach to randomly forced nonlinear PDE’s. I. Comm. Math. Phys. 221 351-366. · Zbl 0991.60056 · doi:10.1007/s002200100479
[29] Kuksin, S. and Shirikyan, A. (2002). Coupling approach to white-forced nonlinear PDEs. J. Math. Pures Appl. ( 9 ) 81 567-602. · Zbl 1021.37044 · doi:10.1016/S0021-7824(02)01259-X
[30] Lasota, A. and Yorke, J. A. (1973). On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186 481-488 (1974). · Zbl 0298.28015 · doi:10.2307/1996575
[31] Liverani, C. (2003). Invariant measures and their properties. A functional analytic point of view. In Dynamical Systems. Part II. Pubbl. Cent. Ric. Mat. Ennio Giorgi 185-237. Scuola Norm. Sup., Pisa. · Zbl 1066.37013
[32] Majda, A. and Wang, X. (2006). The emergence of large-scale coherent structure under small-scale random bombardments. Comm. Pure Appl. Math. 59 467-500. · Zbl 1099.86001 · doi:10.1002/cpa.20102
[33] Malliavin, P. (1978). Stochastic calculus of variation and hypoelliptic operators. In Proceedings of the International Symposium on Stochastic Differential Equations ( Res. Inst. Math. Sci., Kyoto Univ., Kyoto , 1976) 195-263. Wiley, New York. · Zbl 0411.60060
[34] Masmoudi, N. and Young, L.-S. (2002). Ergodic theory of infinite-dimensional systems with applications to dissipative parabolic PDEs. Comm. Math. Phys. 227 461-481. · Zbl 1009.37049 · doi:10.1007/s002200200639
[35] Mattingly, J. C. (1998). The stochastically forced Navier-Stokes equations: Energy estimates and phase space contraction. Ph.D. thesis, Princeton Univ.
[36] Mattingly, J. C. (1999). Ergodicity of 2D Navier-Stokes equations with random forcing and large viscosity. Comm. Math. Phys. 206 273-288. · Zbl 0953.37023 · doi:10.1007/s002200050706
[37] Mattingly, J. C. (2002). Exponential convergence for the stochastically forced Navier-Stokes equations and other partially dissipative dynamics. Comm. Math. Phys. 230 421-462. · Zbl 1054.76020 · doi:10.1007/s00220-002-0688-1
[38] Mattingly, J. C. (2003). On recent progress for the stochastic Navier-Stokes equations. In Journées “Équations aux Dérivées Partielles” Exp. No. XI, 52. Univ. Nantes, Nantes. · Zbl 1044.58044
[39] Mattingly, J. C. and Pardoux, É. (2006). Malliavin calculus for the stochastic 2D Navier-Stokes equation. Comm. Pure Appl. Math. 59 1742-1790. · Zbl 1113.60058 · doi:10.1002/cpa.20136
[40] Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability. Communications and Control Engineering Series . Springer London Ltd., London. · Zbl 0925.60001
[41] Norris, J. (1986). Simplified Malliavin calculus. In Séminaire de Probabilités XX , 1984/85. Lecture Notes in Math. 1204 101-130. Springer, Berlin. · Zbl 0609.60066 · doi:10.1007/BFb0075716
[42] Nussbaum, R. D. (1970). The radius of the essential spectrum. Duke Math. J. 37 473-478. · Zbl 0216.41602 · doi:10.1215/S0012-7094-70-03759-2
[43] Odasso, C. (2006). Ergodicity for the stochastic complex Ginzburg-Landau equations. Ann. Inst. H. Poincaré Probab. Statist. 42 417-454. · Zbl 1104.35078 · doi:10.1016/j.anihpb.2005.06.002
[44] Rachev, S. T. (1991). Probability Metrics and the Stability of Stochastic Models. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics . Wiley, Chichester. · Zbl 0744.60004
[45] Robinson, J. C. (2002). Stability of random attractors under perturbation and approximation. J. Differential Equations 186 652-669. · Zbl 1020.37033 · doi:10.1016/S0022-0396(02)00038-4
[46] Röckner, M. and Sobol, Z. (2004). A new approach to Kolmogorov equations in infinite dimensions and applications to stochastic generalized Burgers equations. C. R. Math. Acad. Sci. Paris 338 945-949. · Zbl 1109.60050 · doi:10.1016/j.crma.2004.03.024
[47] Romito, M. (2004). Ergodicity of the finite-dimensional approximation of the 3D Navier-Stokes equations forced by a degenerate noise. J. Statist. Phys. 114 155-177. · Zbl 1060.76027 · doi:10.1023/B:JOSS.0000003108.92097.5c
[48] Stroock, D. W. (1981). The Malliavin calculus and its applications. In Stochastic Integrals ( Proc. Sympos., Univ. Durham, Durham , 1980). Lecture Notes in Math. 851 394-432. Springer, Berlin. · Zbl 0459.60052
[49] Villani, C. (2003). Topics in Optimal Transportation. Graduate Studies in Mathematics 58 . Amer. Math. Soc., Providence, RI. · Zbl 1106.90001
[50] Villani, C. (2008). Optimal Transport, Old and New. Saint Flour Lectures . Springer. · Zbl 1156.53003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.