×

Minimal co-volume hyperbolic lattices. I: The spherical points of a Kleinian group. (English) Zbl 1171.30014

The paper presents a main step in a program to identify the Kleinian group of smallest co-volume, or equivalently the orientable hyperbolic 3-orbifold of smallest volume. The candidate is a 2-fold extension \(\Gamma_0\) of the orientation-preserving subgroup (tetrahedral group) in the group generated by the reflections in the faces of the hyperbolic Coxeter tetrahedron of type 3 - 5 - 3, with \(\text{Vol}(\mathbb H^3/\Gamma_0) = 0,03905 \ldots\) (the singular set of the orbifold \(\mathbb H^3/\Gamma_0\) is the quotient of the 1-skeleton of this Coxeter tetrahedron by its obvious 2-fold symmetry); by results of T. Chinburg and E. Friedman, \(\Gamma_0\) is known to be the smallest co-volume arithmetic Kleinian group [Invent. Math. 86, 507–527 (1986; Zbl 0643.57011)].
In the present paper, it is shown that the two Kleinian groups of smallest co-volume which contain a tetrahedral, octahedral or icosahedral subgroup (that is, a spherical triangle subgroup of type (2,3,3), (2,3,4) or (2,3,5), fixing a point in hyperbolic 3-space) are the groups \(\Gamma_0\) and a second group \(\Gamma_1\) with \(\text{Vol}(\mathbb H^3/\Gamma_1) = 0,0408 \ldots\) (see a paper by the reviewer [Rend. Ist. Mat. Univ. Trieste 32, Suppl. 2, 149–161 (2001; Zbl 1012.57026)], for pictures of the singular sets of these and some other small volume hyperbolic 3-orbifolds which are the candidates for the smallest hyperbolic 3-orbifolds).
In previous work [J. Differ. Geom. 49, No. 3, 411–435 (1998; Zbl 0989.57010)], the authors had shown that, if a Kleinian group \(\Gamma\) contains an elliptic element of finite order \(\geq 4\) with a simple axis, then \(\text{Vol}(\mathbb H^3/\Gamma) > \text{Vol}(\mathbb H^3/\Gamma_1)\). Hence the basic missing case necessary for determining the Kleinian group of minimal co-volume is that of a Kleinian group with torsion only of order two and three; this case is considered in a preprint by Marshall and Martin which constitutes the second part of the present paper.
Roughly, the proofs in the present paper are based on the following ideas. It is known that the spectrum of distances between the axes of elliptic rotations in Kleinian groups is initially discrete (i.e., for small distances), and in the present paper a similar result is shown for the distances of fixed points of conjugate spherical triangle subgroups of a Kleinian group. This requires the main work of the present paper, involving complex calculations in hyperbolic trigonometry and motivated by a paper by D. A. Derevnin and A. D. Mednykh considering the case of icosahedral fixed points [Sov. Math., Dokl. 37, No. 3, 614–617 (1988); translation from Dokl. Akad. Nauk SSSR 300, No. 1, 27–30 (1988; Zbl 0713.30044)]. Then the configurations which are too small compared with the minimal candidates can be eliminated by arithmetic arguments (in fact, all examples of sufficiently small co-volume turn out to be arithmetic).

MSC:

30F40 Kleinian groups (aspects of compact Riemann surfaces and uniformization)
57M50 General geometric structures on low-dimensional manifolds
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] I. Agol, P. A. Storm, and W. P. Thurston, ”Lower bounds on volumes of hyperbolic Haken 3-manifolds,” J. Amer. Math. Soc., vol. 20, iss. 4, pp. 1053-1077, 2007. · Zbl 1155.58016 · doi:10.1090/S0894-0347-07-00564-4
[2] B. N. Apanasov, ”A certain universal property of Kleinian groups in a hyperbolic metric,” Dokl. Akad. Nauk SSSR, vol. 225, iss. 1, pp. 15-18, 1975. · Zbl 0365.30011
[3] E. M. Andreev, ”Convex polyhedra in Loba,” Mat. Sb. \((\)N.S.\()\), vol. 81 (123), pp. 445-478, 1970. · Zbl 0217.46801 · doi:10.1070/SM1970v010n03ABEH001677
[4] A. F. Beardon, The Geometry of Discrete Groups, New York: Springer-Verlag, 1983. · Zbl 0528.30001
[5] A. Borel, ”Commensurability classes and volumes of hyperbolic \(3\)-manifolds,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. \((4)\), vol. 8, iss. 1, pp. 1-33, 1981. · Zbl 0473.57003
[6] K. Böröczky, ”Packing of spheres in spaces of constant curvature,” Acta Math. Acad. Sci. Hungar., vol. 32, iss. 3-4, pp. 243-261, 1978. · Zbl 0422.52011 · doi:10.1007/BF01902361
[7] C. Cao, ”On three generator Möbius groups,” New Zealand J. Math., vol. 23, iss. 2, pp. 111-120, 1994. · Zbl 0839.30048
[8] C. Cao, ”Some trace inequalities for discrete groups of Möbius transformations,” Proc. Amer. Math. Soc., vol. 123, iss. 12, pp. 3807-3815, 1995. · Zbl 0843.30037 · doi:10.2307/2161910
[9] T. Chinburg and E. Friedman, ”The smallest arithmetic hyperbolic three-orbifold,” Invent. Math., vol. 86, iss. 3, pp. 507-527, 1986. · Zbl 0643.57011 · doi:10.1007/BF01389265
[10] M. Conder, G. Martin, and A. Torstensson, ”Maximal symmetry groups of hyperbolic 3-manifolds,” New Zealand J. Math., vol. 35, iss. 1, pp. 37-62, 2006. · Zbl 1104.20035
[11] M. Culler and P. B. Shalen, ”Paradoxical decompositions, \(2\)-generator Kleinian groups, and volumes of hyperbolic \(3\)-manifolds,” J. Amer. Math. Soc., vol. 5, iss. 2, pp. 231-288, 1992. · Zbl 0769.57010 · doi:10.2307/2152768
[12] D. A. Derevnin and A. D. Mednykh, ”Geometric properties of discrete groups acting with fixed points in a Lobachevskiĭspace,” Dokl. Akad. Nauk SSSR, vol. 300, iss. 1, pp. 27-30, 1988. · Zbl 0713.30044
[13] W. Fenchel, Elementary Geometry in Hyperbolic Space, Berlin: de Gruyter, 1989. · Zbl 0674.51001
[14] D. Gabai, R. G. Meyerhoff, and N. Thurston, ”Homotopy hyperbolic 3-manifolds are hyperbolic,” Ann. of Math., vol. 157, iss. 2, pp. 335-431, 2003. · Zbl 1052.57019 · doi:10.4007/annals.2003.157.335
[15] F. W. Gehring and G. J. Martin, ”Some universal constraints for discrete Möbius groups,” in Paul Halmos, Ewing, J. H. and Gehring, F. W., Eds., New York: Springer-Verlag, 1991, pp. 205-220. · Zbl 0784.30038
[16] F. W. Gehring and G. J. Martin, ”On the Margulis constant for Kleinian groups, I,” Ann. Acad. Sci. Fenn. Math., vol. 21, iss. 2, pp. 439-462, 1996. · Zbl 0854.30031
[17] F. W. Gehring and G. J. Martin, ”Axial distances in discrete Möbius groups,” Proc. Nat. Acad. Sci. U.S.A., vol. 89, iss. 6, pp. 1999-2001, 1992. · Zbl 0753.30030 · doi:10.1073/pnas.89.6.1999
[18] F. W. Gehring and G. J. Martin, ”Commutators, collars and the geometry of Möbius groups,” J. Anal. Math., vol. 63, pp. 175-219, 1994. · Zbl 0799.30034 · doi:10.1007/BF03008423
[19] F. W. Gehring and G. J. Martin, ”On the minimal volume hyperbolic \(3\)-orbifold,” Math. Res. Lett., vol. 1, iss. 1, pp. 107-114, 1994. · Zbl 0834.30029 · doi:10.4310/MRL.1994.v1.n1.a13
[20] F. W. Gehring and G. J. Martin, ”\((p,q,r)\)-Kleinian groups and the Margulis constant,” in Complex Analysis and Dynamical Systems, II, Providence, RI: Amer. Math. Soc., 2005, pp. 149-169. · Zbl 1088.30044
[21] F. W. Gehring and G. J. Martin, ”The volume of hyperbolic \(3\)-folds with \(p\)-torsion, \(p\geq6\),” Quart. J. Math. Oxford Ser. \((2)\), vol. 50, iss. 197, pp. 1-12, 1999. · Zbl 0926.30027 · doi:10.1093/qjmath/50.197.1
[22] F. W. Gehring and G. J. Martin, ”Precisely invariant collars and the volume of hyperbolic \(3\)-folds,” J. Differential Geom., vol. 49, iss. 3, pp. 411-435, 1998. · Zbl 0989.57010
[23] F. W. Gehring, C. Maclachlan, G. J. Martin, and A. W. Reid, ”Arithmeticity, discreteness and volume,” Trans. Amer. Math. Soc., vol. 349, iss. 9, pp. 3611-3643, 1997. · Zbl 0889.30031 · doi:10.1090/S0002-9947-97-01989-2
[24] A. Hurwitz, ”Über algebraische Gebilde mit eindeutigen Transformationen in sich,” Math. Ann., vol. 41, iss. 3, pp. 403-442, 1892. · JFM 24.0380.02 · doi:10.1007/BF01443420
[25] T. Inada, ”An elementary proof of a theorem of Margulis for Kleinian groups,” Math. J. Okayama Univ., vol. 30, pp. 177-186, 1988. · Zbl 0674.30036
[26] T. Jørgensen, ”On discrete groups of Möbius transformations,” Amer. J. Math., vol. 98, iss. 3, pp. 739-749, 1976. · Zbl 0336.30007 · doi:10.2307/2373814
[27] D. A. Kavzdan and G. A. Margulis, ”A proof of Selberg’s hypothesis,” Mat. Sb. \((\)N.S.\()\), vol. 75 (117), pp. 163-168, 1968.
[28] A. W. Knapp, ”Doubly generated Fuchsian groups,” Michigan Math. J., vol. 15, pp. 289-304, 1969. · Zbl 0167.07002 · doi:10.1307/mmj/1029000032
[29] A. M. Macbeath, ”On a theorem of Hurwitz,” Proc. Glasgow Math. Assoc., vol. 5, pp. 90-96 (1961), 1961. · Zbl 0134.16603 · doi:10.1017/S2040618500034365
[30] A. Marden, ”Universal properties of Fuchsian groups in the Poincaré metric,” in Discontinuous Groups and Riemann Surfaces, Greenberg, L., Ed., Princeton Univ. Press, 1974, pp. 315-339. · Zbl 0311.30024
[31] G. A. Margulis, ”Discrete groups of motions of manifolds of nonpositive curvature,” in Proceedings of the International Congress of Mathematicians, II, 1975, pp. 21-34. · Zbl 0336.57037
[32] T. H. Marshall and G. J. Martin, ”Minimal co-volume hyperbolic lattices, II: Simple torsion in Kleinian groups,” , preprint , 2008.
[33] G. J. Martin, ”On the geometry of Kleinian groups,” in Quasiconformal Mappings and Analysis, Duren, P., Heinonen, J., Osgood, B., and Palka, B., Eds., New York: Springer-Verlag, 1998, pp. 253-274. · Zbl 0886.30030
[34] G. J. Martin, ”The volume of regular tetrahedra and sphere packing in hyperbolic \(3\)-space,” Mathematical Chronicle, vol. 20, pp. 127-147, 1991. · Zbl 0761.52012
[35] B. Maskit, Kleinian Groups, New York: Springer-Verlag, 1988. · Zbl 0627.30039
[36] R. Meyerhoff, ”Sphere-packing and volume in hyperbolic \(3\)-space,” Comment. Math. Helv., vol. 61, iss. 2, pp. 271-278, 1986. · Zbl 0611.57010 · doi:10.1007/BF02621915
[37] G. D. Mostow, ”Quasi-conformal mappings in \(n\)-space and the rigidity of hyperbolic space forms,” Inst. Hautes Études Sci. Publ. Math., vol. 34, pp. 53-104, 1968. · Zbl 0189.09402 · doi:10.1007/BF02684590
[38] J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, New York: Springer-Verlag, 1994. · Zbl 0809.51001
[39] A. Selberg, ”On discontinuous groups in higher-dimensional symmetric spaces,” in Contributions to Function Theory, Bombay: Tata Inst. Fundamental Res., 1960, pp. 147-164. · Zbl 0201.36603
[40] C. L. Siegel, ”Discontinuous groups,” Ann. of Math., vol. 44, pp. 674-689, 1943. · Zbl 0061.04504 · doi:10.2307/1969104
[41] C. L. Siegel, ”Some remarks on discontinuous groups,” Ann. of Math., vol. 46, pp. 708-718, 1945. · Zbl 0061.04505 · doi:10.2307/1969206
[42] È. B. Vinberg, ”Hyperbolic groups of reflections,” Uspekhi Mat. Nauk, vol. 40, pp. 29-66, 255, 1985. · Zbl 0579.51015 · doi:10.1070/RM1985v040n01ABEH003527
[43] A. Yamada, ”On Marden’s universal constant of Fuchsian groups,” Kodai Math. J., vol. 4, iss. 2, pp. 266-277, 1981. · Zbl 0469.30038 · doi:10.2996/kmj/1138036373
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.