×

A tour of the theory of absolutely minimizing functions. (English) Zbl 1150.35047

Summary: These notes are intended to be a rather complete and self-contained exposition of the theory of absolutely minimizing Lipschitz extensions, presented in detail and in a form accessible to readers without any prior knowledge of the subject. In particular, we improve known results regarding existence via arguments that are simpler than those that can be found in the literature. We present a proof of the main known uniqueness result which is largely self-contained and does not rely on the theory of viscosity solutions. A unifying idea in our approach is the use of cone functions. This elementary geometric device renders the theory versatile and transparent. A number of tools and issues routinely encountered in the theory of elliptic partial differential equations are illustrated here in an especially clean manner, free from burdensome technicalities- indeed, usually free from partial differential equations themselves. These include a priori continuity estimates, the Harnack inequality, Perron’s method for proving existence results, uniqueness and regularity questions, and some basic tools of viscosity solution theory. We believe that our presentation provides a unified summary of the existing theory as well as new results of interest to experts and researchers and, at the same time, a source which can be used for introducing students to some significant analytical tools.

MSC:

35J70 Degenerate elliptic equations
49K20 Optimality conditions for problems involving partial differential equations
35B50 Maximum principles in context of PDEs
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] ALMANSA, A., Échantillonage, interpolation et détection. Applications en imagerie satellitaire, Ph.D. thesis, E.N.S. de Cachan (2002).
[2] ARONSSON, G., Hur kan en sandhög se ut? (What is the possible shape of a sandpile?) NORMAT, vol. 13 (1965), 41-44. · Zbl 0134.20602
[5] Gunnar Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967), 551 – 561 (1967). · Zbl 0158.05001 · doi:10.1007/BF02591928
[6] Gunnar Aronsson, On the partial differential equation \?\?²\?\?\?+2\?\?\?_{\?}\?_{\?\?}+\?_{\?}²\?_{\?\?}=0, Ark. Mat. 7 (1968), 395 – 425 (1968). · Zbl 0162.42201 · doi:10.1007/BF02590989
[9] Gunnar Aronsson, Construction of singular solutions to the \?-harmonic equation and its limit equation for \?=\infty , Manuscripta Math. 56 (1986), no. 2, 135 – 158. · Zbl 0594.35039 · doi:10.1007/BF01172152
[10] G. Aronsson, L. C. Evans, and Y. Wu, Fast/slow diffusion and growing sandpiles, J. Differential Equations 131 (1996), no. 2, 304 – 335. · Zbl 0864.35057 · doi:10.1006/jdeq.1996.0166
[11] Stefan Banach, Wstȩp do teorii funkcji rzeczywistych, Monografie Matematyczne. Tom XVII.], Polskie Towarzystwo Matematyczne, Warszawa-Wrocław, 1951 (Polish).
[12] G. Barles and Jérôme Busca, Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term, Comm. Partial Differential Equations 26 (2001), no. 11-12, 2323 – 2337. · Zbl 0997.35023 · doi:10.1081/PDE-100107824
[13] E. N. Barron, R. R. Jensen, and C. Y. Wang, The Euler equation and absolute minimizers of \?^{\infty } functionals, Arch. Ration. Mech. Anal. 157 (2001), no. 4, 255 – 283. · Zbl 0979.49003 · doi:10.1007/PL00004239
[14] E. N. Barron, R. R. Jensen, and C. Y. Wang, Lower semicontinuity of \?^{\infty } functionals, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), no. 4, 495 – 517 (English, with English and French summaries). · Zbl 1034.49008 · doi:10.1016/S0294-1449(01)00070-1
[15] BELLONI, M., AND KAWOHL, B., The pseudo-\(p\)-Laplace eigenvalue problem and viscosity solutions as \(p\to\infty\), ESAIM Control Optim. Calc. Var. 10 (2004), 28-52. · Zbl 1092.35074
[16] Tilak Bhattacharya, An elementary proof of the Harnack inequality for non-negative infinity-superharmonic functions, Electron. J. Differential Equations (2001), No. 44, 8. · Zbl 0966.35052
[17] Tilak Bhattacharya, On the properties of \infty -harmonic functions and an application to capacitary convex rings, Electron. J. Differential Equations (2002), No. 101, 22. · Zbl 1037.35028
[18] T. Bhattacharya, E. DiBenedetto, and J. Manfredi, Limits as \?\to \infty of \Delta _{\?}\?_{\?}=\? and related extremal problems, Rend. Sem. Mat. Univ. Politec. Torino Special Issue (1989), 15 – 68 (1991). Some topics in nonlinear PDEs (Turin, 1989).
[19] Thomas Bieske, On \infty -harmonic functions on the Heisenberg group, Comm. Partial Differential Equations 27 (2002), no. 3-4, 727 – 761. · Zbl 1090.35063 · doi:10.1081/PDE-120002872
[20] Thomas Bieske, Viscosity solutions on Grushin-type planes, Illinois J. Math. 46 (2002), no. 3, 893 – 911. · Zbl 1029.35079
[21] BIESKE, T., Lipschitz extensions on generalized Grushin spaces, Michigan Math. J. (to appear). · Zbl 1086.35023
[22] BIESKE, T., AND CAPOGNA, L., The Aronsson-Euler equation for absolutely minimizing Lipschitz extensions with respect to Carnot-Carathéodory metrics, Trans. Amer. Math. Soc. (to appear). · Zbl 1058.35067
[23] Luis A. Caffarelli and Xavier Cabré, Fully nonlinear elliptic equations, American Mathematical Society Colloquium Publications, vol. 43, American Mathematical Society, Providence, RI, 1995. · Zbl 0834.35002
[24] Frédéric Cao, Absolutely minimizing Lipschitz extension with discontinuous boundary data, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 6, 563 – 568 (English, with English and French summaries). · Zbl 0990.35048 · doi:10.1016/S0764-4442(98)89164-7
[25] Vicent Caselles, Jean-Michel Morel, and Catalina Sbert, An axiomatic approach to image interpolation, IEEE Trans. Image Process. 7 (1998), no. 3, 376 – 386. · Zbl 0993.94504 · doi:10.1109/83.661188
[26] CHAMPION, T., AND DE PASCALE, L., A principle of comparison with distance functions for absolute minimizers, preprint. · Zbl 1128.49024
[27] CHAMPION, T., DE PASCALE, L., AND PRINARI, F.,\(\Gamma\)-convergence and absolute minimizers for supremal functionals, ESAIM Control Optim. Calc. Var. (to appear). · Zbl 1068.49007
[28] Michael G. Crandall, An efficient derivation of the Aronsson equation, Arch. Ration. Mech. Anal. 167 (2003), no. 4, 271 – 279. · Zbl 1090.35067 · doi:10.1007/s00205-002-0236-3
[29] M. G. Crandall, L. C. Evans, and R. F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. Partial Differential Equations 13 (2001), no. 2, 123 – 139. · Zbl 0996.49019
[30] Michael G. Crandall and L. C. Evans, A remark on infinity harmonic functions, Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Viña del Mar-Valparaiso, 2000) Electron. J. Differ. Equ. Conf., vol. 6, Southwest Texas State Univ., San Marcos, TX, 2001, pp. 123 – 129. · Zbl 0964.35061
[31] Michael G. Crandall and Pierre-Louis Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), no. 1, 1 – 42. · Zbl 0599.35024
[32] Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 1 – 67. · Zbl 0755.35015
[33] Michael G. Crandall and Jianying Zhang, Another way to say harmonic, Trans. Amer. Math. Soc. 355 (2003), no. 1, 241 – 263. · Zbl 1112.35319
[34] CZIPSZER, J., AND GEHÉR, L., Extension of functions satisfying a Lipschitz condition, Acta Math. Acad. Sci. Hungar. 6 (1955), 213-220. MR0071493 (17:136b) · Zbl 0064.05406
[35] Lawrence C. Evans, Estimates for smooth absolutely minimizing Lipschitz extensions, Electron. J. Differential Equations (1993), No. 03, approx. 9 pp. (electronic only). · Zbl 0809.35032
[36] Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. · Zbl 0804.28001
[37] Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. · Zbl 0176.00801
[38] Avner Friedman, Foundations of modern analysis, Dover Publications, Inc., New York, 1982. Reprint of the 1970 original. · Zbl 0557.46001
[39] Nobuyoshi Fukagai, Masayuki Ito, and Kimiaki Narukawa, Limit as \?\to \infty of \?-Laplace eigenvalue problems and \?^{\infty }-inequality of the Poincaré type, Differential Integral Equations 12 (1999), no. 2, 183 – 206. · Zbl 1064.35512
[40] GASPARI, T., The infinity Laplacian in infinite dimensions, Calc. Var. Partial Differential Equations (to appear). · Zbl 1069.49021
[41] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. · Zbl 1042.35002
[42] Enrico Giusti, Direct methods in the calculus of variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. · Zbl 1028.49001
[43] Juha Heinonen, Tero Kilpeläinen, and Olli Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. · Zbl 0780.31001
[44] Toshihiro Ishibashi and Shigeaki Koike, On fully nonlinear PDEs derived from variational problems of \?^{\?} norms, SIAM J. Math. Anal. 33 (2001), no. 3, 545 – 569. · Zbl 1030.35088 · doi:10.1137/S0036141000380000
[45] Ulf Janfalk, Behaviour in the limit, as \?\to \infty , of minimizers of functionals involving \?-Dirichlet integrals, SIAM J. Math. Anal. 27 (1996), no. 2, 341 – 360. · Zbl 0853.35028 · doi:10.1137/S0036141093252619
[46] Robert Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch. Rational Mech. Anal. 101 (1988), no. 1, 1 – 27. · Zbl 0708.35019 · doi:10.1007/BF00281780
[47] Robert Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal. 123 (1993), no. 1, 51 – 74. · Zbl 0789.35008 · doi:10.1007/BF00386368
[48] Petri Juutinen, Minimization problems for Lipschitz functions via viscosity solutions, Ann. Acad. Sci. Fenn. Math. Diss. 115 (1998), 53. Dissertation, University of Jyväskulä, Jyväskulä, 1998. · Zbl 0902.35037
[49] Petri Juutinen, Absolutely minimizing Lipschitz extensions on a metric space, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 1, 57 – 67. · Zbl 1064.54027
[50] Petri Juutinen, Peter Lindqvist, and Juan J. Manfredi, The \infty -eigenvalue problem, Arch. Ration. Mech. Anal. 148 (1999), no. 2, 89 – 105. · Zbl 0947.35104 · doi:10.1007/s002050050157
[51] Peter Lindqvist and Juan J. Manfredi, The Harnack inequality for \infty -harmonic functions, Electron. J. Differential Equations (1995), No. 04, approx. 5 pp., issn=1072-6691, review=\MR{1322829},. · Zbl 0818.35033
[52] Peter Lindqvist and Juan Manfredi, Note on \infty -superharmonic functions, Rev. Mat. Univ. Complut. Madrid 10 (1997), no. 2, 471 – 480. · Zbl 0891.35043
[53] Peter Lindqvist, Juan Manfredi, and Eero Saksman, Superharmonicity of nonlinear ground states, Rev. Mat. Iberoamericana 16 (2000), no. 1, 17 – 28. · Zbl 0965.31002 · doi:10.4171/RMI/269
[54] Juan Manfredi, Arshak Petrosyan, and Henrik Shahgholian, A free boundary problem for \infty -Laplace equation, Calc. Var. Partial Differential Equations 14 (2002), no. 3, 359 – 384. · Zbl 0993.35092 · doi:10.1007/s005260100107
[55] MCSHANE, E. J., Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934), 837-842. · Zbl 0010.34606
[56] V. A. Mil\(^{\prime}\)man, Lipschitz extensions of linearly bounded functions, Mat. Sb. 189 (1998), no. 8, 67 – 92 (Russian, with Russian summary); English transl., Sb. Math. 189 (1998), no. 7-8, 1179 – 1203. · Zbl 0914.54010 · doi:10.1070/SM1998v189n08ABEH000340
[57] V. A. Mil\(^{\prime}\)man, Absolutely minimal extensions of functions on metric spaces, Mat. Sb. 190 (1999), no. 6, 83 – 110 (Russian, with Russian summary); English transl., Sb. Math. 190 (1999), no. 5-6, 859 – 885. · Zbl 0931.54013 · doi:10.1070/SM1999v190n06ABEH000409
[58] REICH, S., Review of “Geometry of Banach spaces, duality mappings and nonlinear problems” by Ioana Cioranescu, Bull. Amer. Math. Soc. 26 (N.S.) (1992), 367-370.
[59] Edi Rosset, A lower bound for the gradient of \infty -harmonic functions, Electron. J. Differential Equations (1996), No. 02, approx. 6 pp., issn=1072-6691, review=\MR{1371219},. · Zbl 0886.35028
[60] Edi Rosset, Symmetry and convexity of level sets of solutions to the infinity Laplace’s equation, Electron. J. Differential Equations (1998), No. 34, 12. · Zbl 0911.35010
[61] SAVIN, O.,\(C^1\) regularity for infinity harmonic functions in two dimensions, preprint. · Zbl 1112.35070
[62] WANG, C., The Aronsson equation for absolute minimizers of \(L^\infty\)-functionals associated with vector fields satisfying Hörmander’s condition, preprint (2003).
[63] Hassler Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), no. 1, 63 – 89. · Zbl 0008.24902
[64] WU, Y., Absolute minimizers in Finsler metrics, Ph.D. dissertation, UC Berkeley, 1995.
[65] YU, Y., Sufficiency of Aronsson-Euler equations without zeroth order terms, preprint.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.