×

Homotopy perturbation method for solving sixth-order boundary value problems. (English) Zbl 1142.65386

Summary: We apply the homotopy perturbation method for solving the sixth-order boundary value problems by reformulating them as an equivalent system of integral equations. This equivalent formulation is obtained by using a suitable transformation. The analytical results of the integral equations have been obtained in terms of convergent series with easily computable components. Several examples are given to illustrate the efficiency and implementation of the homotopy perturbation method. Comparisons are made to confirm the reliability of the homotopy perturbation method. We have also considered an example where the homotopy perturbation method is not reliable.

MSC:

65L10 Numerical solution of boundary value problems involving ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] He, J. H., Some asymptotic methods for strongly nonlinear equation, Int. J. Nod. Phys., 20, 1144-1199 (2006)
[2] He, J. H., Homotopy perturbation technique, Comput. Math. Appl. Mech. Energy, 178-257 (1999) · Zbl 0956.70017
[3] He, J. H., Homotopy perturbation method for solving boundary value problems, Phys. Lett. A, 350, 87-88 (2006) · Zbl 1195.65207
[4] He, J. H., Comparison of homotopy perturbation method and homtopy analysis method, Appl. Math. Comput., 156, 527-539 (2004) · Zbl 1062.65074
[5] He, J. H., Homotopy perturbation method for bifurcation of nonlinear problems, Int. J. Nonlinear Sci. Numer. Simul., 6, 207-208 (2005) · Zbl 1401.65085
[6] He, J. H., The homotopy perturbation method for nonlinear oscillators with discontinuities, Appl. Math. Comput., 151, 287-292 (2004) · Zbl 1039.65052
[7] He, J. H., A coupling method of homotopy technique and perturbation technique for nonlinear problems, Int. J. Nonlinear Mech., 35, 1, 115-123 (2000)
[8] Liao, S. J., An approximate solution technique not depending on small parameter: A special example, Int. J. Nonlinear Mech., 30, 371-380 (1995) · Zbl 0837.76073
[9] Liao, S. J., Boundary element method for general nonlinear differential operators, Eng. Anal. Boundary Elem., 20, 91-99 (1997)
[10] Mohyud-Din, S. T.; Noor, M. A., Homotopy perturbation method for solving fourth order boundary value problems, Math. Probl. Eng. (2007) · Zbl 1144.65311
[11] Nayfeh, A. H., Introduction to Perturbation Techniques (1981), John Wiley and sons · Zbl 0449.34001
[12] Noor, M. A.; Mohyud-Din, S. T., Homotopy method for solving eighth order boundary value problem, J. Math. Anal. Appl. Theory, 1, 161-169 (2006) · Zbl 1204.65086
[13] Noor, M. A.; Mohyud-Din, S. T., An efficient algorithm for solving fifth order boundary value problems, Math. Comput. Modelling, 45, 954-964 (2007) · Zbl 1133.65052
[14] J.H. He, Non-perturbative methods for strongly nonlinear problems, Berlin: Dissertation. Deverlag Internet GmbH (2006); J.H. He, Non-perturbative methods for strongly nonlinear problems, Berlin: Dissertation. Deverlag Internet GmbH (2006)
[15] Wazwaz, A. M., The numerical solution of sixth order boundary value problems by the modified decomposition method, Appl. Math. Comput., 118, 311-325 (2001) · Zbl 1023.65074
[16] He, J. H., Variational iteration method- a kind of non-linear analytical technique: Some examples, Int. J. Nonlinear Mech., 34, 699-708 (1999) · Zbl 1342.34005
[17] He, J. H., Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput., 114, 115-123 (2000) · Zbl 1027.34009
[18] He, J. H., Generalized Variational Principles in Fluids (2003), Science and Culture Publishing House of China, (in Chinese) · Zbl 1054.76001
[19] He, J. H.; Wu, X. H., Construction of solitary solution and compacton-like solution by variational iteration method, Chaos Solitons Fractals, 29, 108-113 (2006) · Zbl 1147.35338
[20] He, J. H., Variational approach to the sixth order boundary value problems, Appl. Math. Comput., 143, 537-538 (2003) · Zbl 1025.65043
[21] He, J. H., Approximate solution for nonlinear differential equations convolution product non-linearities, Comput. Meth. Appl. Mech. Eng., 167, 69-73 (1998)
[22] He, J. H., Variational iteration method: A kind of nonlinear analytical technique: Some examples, Int. J. Non-linear Mech., 34 J, 699-708 (1999) · Zbl 1342.34005
[23] Noor, M. A.; Mohyud-Din, S. T., Variational iteration technique for solving higher order boundary value problems, Appl. Math. Comput., 189, 1929-1942 (2007) · Zbl 1122.65374
[24] Noor, M. A.; Mohyud-Din, S. T., An efficient method for fourth order boundary value problems, Comput. Math. Appl., 54, 1101-1111 (2007) · Zbl 1141.65375
[25] M.A. Noor, S.T. Mohyud-Din, Variational iteration method for solving sixth order boundary value problems, pre-print (2007); M.A. Noor, S.T. Mohyud-Din, Variational iteration method for solving sixth order boundary value problems, pre-print (2007)
[26] Abbasbandy, S., A numerical solution of Blasius equation by Adomian’s decomposition method and comparison with homotopy perturbation method, Chaos Solitons Fractals, 31, 257-260 (2007)
[27] Abbasbandy, A., Application of He’s homotopy perturbation method for Laplace transform, Chaos Solitons Fractals, 30, 1206-1212 (2006) · Zbl 1142.65417
[28] Baldwin, P., Asymptotic estimates of the eigen values of a sixth-order boundary-value problem obtained by using global phase-integral methods, Phil. Trans. Roy. Soc. London A, 322, 281-305 (1987) · Zbl 0625.76043
[29] Baldwin, P., A localized instability in a Benard layer, Appl. Anal., 24, 1127-1156 (1987) · Zbl 0588.76076
[30] Boutayeb, A.; Twizell, E. H., Numerical methods for the solution of special sixth-order boundary value problems, Int. J. Comput. Math., 45, 207-233 (1992) · Zbl 0773.65055
[31] Siddiqi, S. S.; Twizell, E. H., Spline solutions of linear sixth-order boundary value problems, Int. J. Comput. Math., 60, 295-304 (1996) · Zbl 1001.65523
[32] Toomore, J.; Zahn, J. P.; Latour, J.; Spiegel, E. A., Stellar convection theory II: Single-mode study of the secong convection zone in A-type stars, Astrophys. J., 207, 545-563 (1976)
[33] Twizell, E. H.; Boutayeb, A., Numerical methods for the solution of special and general sixth-order boundary value problems, with applications to Benard layer eigen value problem, Proc. Roy. Soc. London A, 431, 433-450 (1990) · Zbl 0722.65042
[34] Twizell, E. H., Numerical methods for sixth-order boundary value problems, (Numerical Mathematics, Singapore, 1988. Numerical Mathematics, Singapore, 1988, International Series of Numer. Math., vol. 86 (1988), Birkhauser: Birkhauser Basel), 495-506 · Zbl 0657.65105
[35] Glatzmaier, G. A., Numerical simulations of stellar convection dynamics at the base of the convection zone, geophys, Fluid Dynam., 31, 137-150 (1985)
[36] Agarwal, R. P., Boundary Value Problems for Higher Order Differential Equations (1986), World scientific: World scientific Singapore · Zbl 0598.65062
[37] Akram, G.; Siddiqi, S. S., Solution of sixth order boundary value problems using non-polynomial spline technique, Appl. Math. Comput., 181, 708-720 (2006) · Zbl 1155.65361
[38] Chandrasekhar, S., Hydrodynamics and Hydromagntic Stability (1981), Dover: Dover New York
[39] Chawla, M. M.; Katti, C. P., Finite difference methods for two-point boundary-value problems involving higher order differential equations, BIT, 19, 27-33 (1979) · Zbl 0401.65053
[40] He, J. H., Variational approach to the sixth order boundary value problems, Appl. Math. Comput., 143, 235-236 (2003)
[41] Gamel, M. E.; Cannon, J. R.; Zayed, A. I., Sinc-Galerkin method for solving linear sixth order boundary value problems, Appl. Math. Comput., 73, 1325-1343 (2003) · Zbl 1054.65085
[42] Cveticanin, L., Homotopy-perturbation method for pure nonlinear differential equation, Chaos Solitons Fractals, 30, 1221-1230 (2006) · Zbl 1142.65418
[43] El-Shahed, M., Application of He’s homotopy perturbation method of Volterra’s integro-differential equation, Int. J. Nonin. Sci. Numer. Simul., 6, 163-168 (2005) · Zbl 1401.65150
[44] Rafei, M.; Ganji, D. D., Explicit solutions of Helmohltz equation and fifth-order KdV equation using homotopy perturbation method, Int. J. Nonin. Sci. Numer. Simul., 7, 321-328 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.