×

A long wave approximation for capillary-gravity waves and an effect of the bottom. (English) Zbl 1136.35081

The paper aims to generalize the classical derivation of the Korteweg-de Vries equation for small-amplitude long waves on the surface of a shallow layer of water (in the absence of viscosity and for irrotational flows), taking into regard the surface tension and possible non-uniformity of the bottom. The analysis gives rise to a coupled system of two equations for the velocity at the surface, \(v(x,t)\), and local elevation of the surface, \(\eta(x,t)\):
\[ \begin{aligned} u_t +\eta_x +\varepsilon u_1u_x - \varepsilon \mu\eta_{xxxx}&=0,\\ \eta_x + u_x+\varepsilon[(\eta - b)]_x + (\varepsilon/3)u_{xxx}&=0, \end{aligned} \]
where \(b(x)\) is the local depth, and small parameter \(\varepsilon\) is the measure for the smallness of ratio of the local elevation of the free surface to the depth of the layer. It is proven that the full dynamics of the water waves is described by the above system for a long time interval. In fact, a priori estimates for the duration of the validity interval are essentially the same as obtained in earlier works, but estimates for the solution, and especially for its derivatives, are much stronger. The analysis is performed in the Eulerian (rather than Lagrangian) coordinates.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76B45 Capillarity (surface tension) for incompressible inviscid fluids
35B45 A priori estimates in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1098/rsta.1975.0035 · Zbl 0306.35027 · doi:10.1098/rsta.1975.0035
[2] DOI: 10.1215/S0012-7094-76-04309-X · Zbl 0335.35032 · doi:10.1215/S0012-7094-76-04309-X
[3] DOI: 10.2307/2007065 · Zbl 0497.42012 · doi:10.2307/2007065
[4] DOI: 10.1016/0001-8708(83)90084-1 · Zbl 0518.42024 · doi:10.1016/0001-8708(83)90084-1
[5] DOI: 10.1080/03605308508820396 · Zbl 0577.76030 · doi:10.1080/03605308508820396
[6] David G., Ann. Sci. Ecole Norm. Sup. 17 pp 157– (1984)
[7] Iguchi T., Funkcial. Ekvac. 44 pp 219– (2001)
[8] DOI: 10.1007/s002080050110 · Zbl 0897.76017 · doi:10.1007/s002080050110
[9] Kano T., Osaka J. Math. 23 pp 389– (1986)
[10] Korteweg D. J., Phil. Mag. 39 pp 422– (1895)
[11] Nalimov V. I., Dinamika Splošn. Sredy 18 pp 104– (1974)
[12] Nirenberg L., J. Differential Geometry 6 pp 561– (1972)
[13] Ovsjannikov L. V., Soviet Math. Dokl. 6 pp 1025– (1965)
[14] Ovsjannikov L. V., Soviet Math. Dokl. 12 pp 1497– (1971)
[15] DOI: 10.1007/BF02761431 · Zbl 0334.35062 · doi:10.1007/BF02761431
[16] DOI: 10.1002/1097-0312(200012)53:12<1475::AID-CPA1>3.0.CO;2-V · Zbl 1034.76011 · doi:10.1002/1097-0312(200012)53:12<1475::AID-CPA1>3.0.CO;2-V
[17] DOI: 10.1007/s002050200190 · Zbl 1055.76006 · doi:10.1007/s002050200190
[18] Temam R., J. Math. Pures Appl. 48 pp 159– (1969)
[19] Tsutsumi M., Funkcial. Ekvac. 14 pp 89– (1971)
[20] DOI: 10.2977/prims/1195184016 · Zbl 0493.76018 · doi:10.2977/prims/1195184016
[21] Yosihara H., J. Math. Kyoto Univ. 23 pp 649– (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.