×

Optimal scaling for various Metropolis-Hastings algorithms. (English) Zbl 1127.65305

Summary: We review and extend results related to optimal scaling of Metropolis-Hastings algorithms. We present various theoretical results for the high-dimensional limit. We also present simulation studies which confirm the theoretical results in finite-dimensional contexts.

MSC:

65C05 Monte Carlo methods
60J05 Discrete-time Markov processes on general state spaces
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Besag, J. E. (1994). Comment on ”Representations of knowledge in complex sy stems” by U. Grenander and M. I. Miller. J. Roy. Statist. Soc. Ser. B 56 591-592.
[2] Brey er, L. and Roberts, G. O. (2000). From Metropolis to diffusions: Gibbs states and optimal scaling. Stochastic Process. Appl. 90 181-206. · Zbl 1047.60065 · doi:10.1016/S0304-4149(00)00041-7
[3] Gelman, A., Roberts, G. O. and Gilks, W. R. (1996). Efficient Metropolis jumpingrules. Bayesian Statist. 5 599-608. Gilks, W. R, Richardson, S. and Spiegelhalter, D. J. eds.
[4] . Markov Chain Monte Carlo in Practice. Chapman and Hall, London. · Zbl 0832.00018
[5] Jarner, S. F. and Roberts, G. O. (2001). Convergence of heavy tailed Metropolis algorithms. Available at www.statslab. cam.ac.uk/mcmc. URL:
[6] Kennedy, A. D. and Pendleton, B. (1991). Acceptances and autocorrelations in hy brid Monte Carlo. Nuclear Phy s. B 20 118-121.
[7] Roberts, G. O. (1998). Optimal Metropolis algorithms for product measures on the vertices of a hy percube. Stochastics Stochastic Rep. 62 275-283. · Zbl 0904.60021
[8] Roberts, G. O., Gelman, A. and Gilks, W. R. (1997). Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Probab. 7 110-120. · Zbl 0876.60015 · doi:10.1214/aoap/1034625254
[9] Roberts, G. O. and Rosenthal, J. S. (1998). Optimal scaling of discrete approximations to Langevin diffusions. J. Roy. Statist. Soc. Ser. B 60 255-268. JSTOR: · Zbl 0913.60060 · doi:10.1111/1467-9868.00123
[10] Roberts, G. O. and Tweedie, R. L. (1996). Exponential convergence of Langevin diffusions and their discrete approximations. Biometrika 2 341-363. · Zbl 0870.60027 · doi:10.2307/3318418
[11] Roberts, G. O. and Yuen. W. K. (2001). Optimal scalingof Metropolis algorithms for discontinuous densities. Unpublished manuscript.
[12] Sinclair, A. J. and Jerrum, M. R. (1989). Approximate counting, uniform generation, and rapidly mixing Markov chains. Inform. and Comput. 82 93-133. · Zbl 0668.05060 · doi:10.1016/0890-5401(89)90067-9
[13] Smith, A. F. M. and Roberts, G. O. (1993). Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods (with discussion). J. Roy. Statist. Soc. Ser. B 55 3-24. JSTOR: · Zbl 0779.62030
[14] Tierney, L. (1994). Markov chains for exploringposterior distributions (with discussion). Ann. Statist. 22 1701- 1762. · Zbl 0829.62080 · doi:10.1214/aos/1176325750
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.