×

Representation theorems, set-valued and fuzzy set-valued Itô integral. (English) Zbl 1119.60039

The authors begin by discussing quite usual properties of set-valued martingales with continuous time, in particular their Castaing representations by means of martingale selections. This is used to define a variant of the integral of a set-valued square integrable process with respect to the Brownian motion. This definition relies on taking integrals of predictable selections of a set-valued process. The stochastic integral then becomes a set-valued process, whose basic properties (like selection representation and linearity) are established. Finally, the authors provide a rather straightforward generalisation for the case of fuzzy set-valued stochastic processes (i.e. monotonic families of set-valued processes).

MSC:

60H05 Stochastic integrals
60D05 Geometric probability and stochastic geometry
26E50 Fuzzy real analysis
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ahmed, N. U., Nonlinear stochastic differential inclusions on Banach space, Stochastic Anal. Appl., 12, 1-10 (1994) · Zbl 0789.60052
[2] Aubin, J. P.; Frankowska, H., Set-Valued Analysis (1990), Birkhauser: Birkhauser Basel
[3] Aubin, J. P.; Prato, G. D., The viability theorem for stochastic differential inclusions, Stochastic Anal. Appl., 16, 1-15 (1998) · Zbl 0931.60059
[4] Aumann, R., Integrals of set valued functions, J. Math. Anal. Appl., 12, 1-12 (1965) · Zbl 0163.06301
[5] Beer, G., Topologies on Closed and Closed Convex Sets (1993), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0792.54008
[6] Castaing, C.; Valadier, M., Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, vol. 580 (1977), Springer: Springer Berlin, New York · Zbl 0346.46038
[7] Diamond, P.; Kloeden, P., Metric Spaces of Fuzzy Sets—Theory and Applications (1994), World Scientific: World Scientific Singapore · Zbl 0873.54019
[8] Ikeda, N.; Watanabe, S., Stochastic Differential Equations and Diffusion Processes (1981), North-Holland: North-Holland Kodansha, Tokyo · Zbl 0495.60005
[9] Jung, E. J.; Kim, J. H., On set-valued stochastic integrals, Stochastic. Anal. Appl., 21, 2, 401-418 (2003) · Zbl 1049.60048
[10] Hess, C., On multivalued martingales whose values may be unbounded: martingale selectors and Mosco convergence, J. Multivariate Anal., 39, 175-201 (1991) · Zbl 0746.60051
[11] Hiai, F.; Umegaki, H., Integrals, conditional expectations and martingales of multivalued functions, J. Multivariate Anal., 7, 149-182 (1977) · Zbl 0368.60006
[12] Hu, S.; Papageorgiou, N. S., Handbook of Multivalued Analysis (1997), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0887.47001
[13] Karatzas, I., Lectures on the Mathematics of Finance (1997), American Mathematical Society: American Mathematical Society Providence, RI, USA
[14] Kim, B. K.; Kim, J. H., Stochastic integrals of set-valued processes and fuzzy processes, J. Math. Anal. Appl., 236, 480-502 (1999) · Zbl 0954.60043
[15] Kisielewicz, M., Existence theorem for nonconvex stochastic inclusions, J. Appl. Math. Stochastic Anal., 7, 151-159 (1994) · Zbl 0817.93065
[16] Kisielewicz, M., Viability theorems for stochastic inclusions, Discuss. Math., 15, 61-74 (1995) · Zbl 0844.93072
[17] Kisielewicz, M., Set-valued stochastic integrals and stochastic inclusions, Stochastic Anal. Appl., 15, 780-800 (1997) · Zbl 0891.93070
[18] Kisielewicz, M.; Michta, M.; Motyl, J., Set valued approach to stochastic control part I (existence and regularity properties), Dynamic Systems Appl., 12, 405-432 (2003) · Zbl 1063.93047
[19] Kisielewicz, M.; Michta, M.; Motyl, J., Set valued approach to stochastic control part II (viability and semimartingale issues), Dynamic Systems Appl., 12, 433-466 (2003) · Zbl 1064.93042
[20] Klein, E.; Thompson, A. C., Theory of Correspondences Including Applications to Mathematical Economics (1984), Wiley: Wiley New York · Zbl 0556.28012
[21] S. Li, Martingale property of set-valued Ito integral, preprint, 2006.; S. Li, Martingale property of set-valued Ito integral, preprint, 2006.
[22] S. Li, L. Guan, Decomposition and representation theorem of set-valued amarts, Internat. J. Approx. Reason., 2006, to appear.; S. Li, L. Guan, Decomposition and representation theorem of set-valued amarts, Internat. J. Approx. Reason., 2006, to appear. · Zbl 1135.60317
[23] Li, S.; Ogura, Y., Convergence of set valued sub- and super-martingales in the Kuratowski-Mosco sense, Ann. Probab., 26, 1384-1402 (1998) · Zbl 0938.60031
[24] Li, S.; Ogura, Y.; Kreinovich, V., Limit Theorems and Applications of Set-Valued and Fuzzy Sets—Valued Random Variables (2002), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 1348.60003
[25] Luu, D. Q., Representations and regularity of multivalued martingales, Acta Math. Vietnam, 6, 29-40 (1981) · Zbl 0522.60045
[26] Motyl, J., Stability problem for stochastic inclusion, Stochastic Anal. Appl., 16, 933-944 (1998) · Zbl 0917.60060
[27] Oksendal, B., Stochastic Differential Equations (1995), Springer: Springer Berlin
[28] Puri, M. L.; Ralescu, D. A., Fuzzy random variables, J. Math. Anal. Appl., 114, 406-422 (1986) · Zbl 0605.60038
[29] Rogers, L. C.G.; Williams, D., Diffusions Markov Processes and Martingales, vol. 2: Ito Calculus (2000), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0977.60005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.