×

Statistical convergence and ideal convergence for sequences of functions. (English) Zbl 1119.40002

The paper discusses various types of statistical convergence and ideal convergence for sequences of functions with real values or with values in a more general metric space. The authors present very thoroughly the definitions and types of ideal convergence for functions and prove several results regarding ideal pointwise and ideal uniform convergence. The results are exemplified through analytical instances.
The main outcomes of the paper are the derivation and proof of two theorems, counterparts of the Egorov and Riesz theorems from classical analysis, in which statistical convergence of measurable functions is used.

MSC:

40A30 Convergence and divergence of series and sequences of functions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Balcerzak, M.; Dems, K., Some types of convergence and related Baire systems, Real Anal. Exchange, 30, 267-276 (2004/2005) · Zbl 1071.26003
[2] Bartle, R. G., An extension of Egorov’s theorem, Amer. Math. Monthly, 87, 628-633 (1980) · Zbl 0445.28006
[3] Connor, J.; Ganichev, M.; Kadets, V., A characterization of Banach spaces with separable duals via weak convergence, J. Math. Anal. Appl., 244, 251-261 (2000) · Zbl 0982.46007
[4] Cooke, R. G., Infinite Matrices and Sequence Spaces (1950), Macmillan: Macmillan London · Zbl 0040.02501
[5] Dems, K., On \(I\)-Cauchy sequences, Real Anal. Exchange, 30, 123-128 (2004/2005) · Zbl 1070.26003
[6] Farah, I., Analytic Quotients. Theory of Liftings for Quotients over Analytic Ideals on the Integers, Mem. Amer. Math. Soc., 148, 702 (2000) · Zbl 0966.03045
[7] Fast, H., Sur la convergence statistique, Colloq. Math., 2, 241-244 (1951) · Zbl 0044.33605
[8] Federer, H., Geometric Measure Theory (1969), Springer: Springer New York · Zbl 0176.00801
[9] Fremlin, D. H., Measure Theory, vol. 2: Broad Foundations (2001), Torres Fremlin: Torres Fremlin Colchester · Zbl 1165.28001
[10] Fridy, J. A., On statistical convergence, Analysis, 5, 301-313 (1985) · Zbl 0588.40001
[11] Fridy, J. A.; Khan, M. K., Tauberian theorems via statistical convergence, J. Math. Anal. Appl., 228, 73-95 (1998) · Zbl 0919.40006
[12] Hartman, S., Sur une familie singuliére d’ensembles de nombres naturels, Colloq. Math., 2, 245-248 (1951) · Zbl 0044.27402
[13] Katětov, M., Products of filters, Comment. Math. Univ. Carolin., 9, 173-189 (1968) · Zbl 0155.50301
[14] Katětov, M., On descriptive classes of functions, (Theory of Sets and Topology (in Honour of Felix Hausdorff, 1868-1942) (1972), VEB Deutsch. Verlag Wissensch.: VEB Deutsch. Verlag Wissensch. Berlin), 265-278
[15] Kostyrko, P.; Šalát, T.; Wilczyński, W., \(I\)-Convergence, Real Anal. Exchange, 26, 669-689 (2000/2001)
[16] Lahiri, B. K.; Das, P., Further results on \(I\)-limit superior and limit inferior, Math. Commun., 8, 151-156 (2003) · Zbl 1043.40001
[17] Miller, H. I., A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc., 347, 1811-1819 (1995) · Zbl 0830.40002
[18] Miller, H. I.; Orhan, C., On almost convergent and statistically convergent subsequences, Acta Math. Hungar., 93, 135-151 (2001) · Zbl 0989.40002
[19] Nurray, F.; Ruckle, W. H., Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl., 245, 513-527 (2000) · Zbl 0955.40001
[20] Papanastassiou, N., On a new type of convergence of sequences of functions, Atti Sem. Math. Fis. Univ. Modena, 50, 355-368 (2002)
[21] Pehlivan, S.; Karaev, M. T., Some results related with statistical convergence and Berezin symbols, J. Math. Anal. Appl., 299, 333-340 (2004) · Zbl 1055.40001
[22] Rozycki, E. P., On Egoroff’s theorem, Fund. Math., 56, 289-293 (1965) · Zbl 0178.05301
[23] Rudin, W., Principles of Mathematical Analysis (1976), McGraw-Hill · Zbl 0148.02903
[24] Šalát, T., On statistically convergent sequences of real numbers, Math. Slovaca, 30, 139-150 (1980) · Zbl 0437.40003
[25] Steinhaus, H., Sur la convergence ordinarie et la convergence asymptotique, Colloq. Math., 2, 73-74 (1951)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.