×

Homology of generalized partition posets. (English) Zbl 1109.18002

For an operad (it is a monoid in a monoidal category \(({\mathcal S}\text{-Mod},\circ ,1)\) of \({\mathcal S}\)-modules) finite partition posets are defined. A finite poset with exactly one minimal and exactly one maximal element such that maximal chains have the same length and its homology is concentrated in top dimension is called Cohen-Macauley. The main result says that an operad is Kozsul if and only if its posets are Cohen-Macauley. This characterization allows us to compute homology of Cohen-Macauley posets (the homology groups are isomorphic to the Kozsul dual cooperad) and provides combinatorial methods for recognization of Kozsul operads. Many examples illustrating these results are presented.

MSC:

18D50 Operads (MSC2010)
05E25 Group actions on posets, etc. (MSC2000)
18G35 Chain complexes (category-theoretic aspects), dg categories
55U10 Simplicial sets and complexes in algebraic topology
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Björner, A., Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc., 260, 159-183 (1980) · Zbl 0441.06002
[2] Björner, A.; Garsia, A. M.; Stanley, R. P., An introduction to Cohen-Macaulay partially ordered sets, (Rival, I., Ordered Sets (1982), Reidel: Reidel Dordrecht), 583-615
[3] Chapoton, F., Un endofoncteur de la catégorie des opérades, (Dialgebras and Related Operads. Dialgebras and Related Operads, Lecture Notes in Mathematics, vol. 1763 (2001), Springer-Verlag) · Zbl 0999.17004
[4] Chapoton, F., Opérades différentielles graduées sur les simplexes et les permutoèdres, Bull. Soc. Math. France, 130, 2, 233-251 (2002) · Zbl 1044.18007
[5] Chapoton, F.; Livernet, M., Pre-Lie algebras and the rooted trees operad, Internat. Res. Notices, 8, 395-408 (2001) · Zbl 1053.17001
[6] F. Chapoton, B. Vallette, Pointed and multi-pointed partitions of type A and B, J. Algebraic Comb. (in press). math.QA/0410051; F. Chapoton, B. Vallette, Pointed and multi-pointed partitions of type A and B, J. Algebraic Comb. (in press). math.QA/0410051 · Zbl 1093.05071
[7] Curtis, E. B., Simplicial homotopy theory, Adv. Math., 6, 107-209 (1971) · Zbl 0225.55002
[8] Cibils, C., Cohomology of incidence algebras and simplicial complexes, J. Pure Appl. Algebra, 56, 221-232 (1989) · Zbl 0683.16018
[9] Fresse, B., Koszul duality of operads and homology of partition posets, (Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology and Algebraic K-theory. Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology and Algebraic K-theory, Contemp. Math., vol. 346 (2004), AMS) · Zbl 1077.18007
[10] A.V. Gnedbaye, Opérades des algèbres \(( k + 1 )\); A.V. Gnedbaye, Opérades des algèbres \(( k + 1 )\)
[11] Ginzburg, V.; Kapranov, M. M., Koszul duality for operads, Duke Math. J., 76, 203-272 (1995) · Zbl 0855.18006
[12] Hanlon, P.; Wachs, M., On Lie \(k\)-algebras, Adv. Math., 113, 206-236 (1995) · Zbl 0844.17001
[13] Loday, J.-L., La renaissance des opérades, Séminaire Bourbaki (Exp. No. 792), Astérisque, 237, 47-74 (1996)
[14] Loday, J.-L., Dialgebras, (Dialgebras and Related Operads. Dialgebras and Related Operads, Lecture Notes in Mathematics, vol. 1763 (2001), Springer-Verlag) · Zbl 0999.17002
[15] Loday, J.-L.; Ronco, M., Trialgebras and families of polytopes, (Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology and Algebraic K-theory. Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology and Algebraic K-theory, Contemp. Math., vol. 346 (2004), AMS) · Zbl 1065.18007
[16] Mac Lane, S., (Categories for the Working Mathematician. Categories for the Working Mathematician, Oxford Mathematical Monographs (1995), Oxford University Press) · Zbl 0232.18001
[17] Markl, M., Distributive laws and Koszulness, Ann. Inst. Fourier, 46, 2, 307-323 (1996) · Zbl 0853.18005
[18] Markl, M.; Shnider, S.; Stasheff, J., (Operads in Algebra, Topology and Physics. Operads in Algebra, Topology and Physics, Mathematical Surveys and Monographs, vol. 96 (2002), American Mathematical Society) · Zbl 1017.18001
[19] May, J. P., (Simplicial Objects in Algebraic Topology. Simplicial Objects in Algebraic Topology, Chicago Lectures in Mathematics (1993)) · Zbl 0165.26004
[20] Polo, P., On Cohen-Macaulay posets, Koszul algebras and certain modules associated to Schubert varieties, Bull. London Math. Soc., 27, 425-434 (1995) · Zbl 0834.06007
[21] Quillen, D., Homotopy properties of the poset of non-trivial \(p\)-subgroups of a group, Adv. Math., 28, 101-128 (1978) · Zbl 0388.55007
[22] Robinson, A.; Whitehouse, S., The tree representation of \(\Sigma_{n + 1}\), J. Pure Appl. Algebra, 111, 245-253 (1996) · Zbl 0865.55010
[23] Stanley, R. P., Enumerative Combinatorics, vol. I (1997), Cambridge University Press · Zbl 0889.05001
[24] B. Vallette, A Koszul duality for props, Trans. A.M.S. (in press). math.AT/0411542; B. Vallette, A Koszul duality for props, Trans. A.M.S. (in press). math.AT/0411542 · Zbl 1140.18006
[25] Woodock, D., Cohen-Macaulay complexes and Koszul rings, Bull. London Math. Soc., 57, 398-410 (1998) · Zbl 0946.13009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.