×

A new regularity criterion for weak solutions to the Navier-Stokes equations. (English) Zbl 1092.35081

A new regularity criterion for weak solutions to the 3D Navier-Stokes equations is obtained. The author shows that if any one component of the velocity field belongs to \(L^\alpha ([0,T); L^\gamma (\mathbb{R}^3 ))\) with \(\frac{2}{\alpha} + \frac {3} {\gamma} \leq \frac{1}{2}\), \(6< \gamma \leq \infty \), then the weak solution actually is regular and unique.

MSC:

35Q30 Navier-Stokes equations
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids
35B45 A priori estimates in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Beirão da Veiga, H., A new regularity class for the Navier-Stokes equations in \(R^n\), Chinese Ann. Math., 16, 407-412 (1995) · Zbl 0837.35111
[2] Beirão da Veiga, H., A sufficient condition on the pressure for the regularity of weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 2, 99-106 (2000) · Zbl 0970.35105
[3] Beirao da Veiga, H., On the smoothness of a class of weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 2, 4, 315-323 (2000) · Zbl 0972.35089
[4] Berselli, L. C.; Galdi, G. P., Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations, Proc. Amer. Math. Soc., 130, 12, 3585-3595 (2002) · Zbl 1075.35031
[5] Caffarelli, L.; Kohn, R.; Nirenberg, L., Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35, 771-831 (1982) · Zbl 0509.35067
[6] Chae, D.; Choe, H. J., On the regularity criterion for the solutions of the Navier-Stokes equations, Electron. J. Differential Equations, 1999, 5, 1-7 (1999)
[7] Chae, D.; Lee, J., Regularity criterion in terms of pressure for the Navier-Stokes equations, Nonlinear Anal. Ser. A: Theory Methods, 46, 5, 727-735 (2001) · Zbl 1007.35064
[8] P. Constantin, C. Foias, Navier-Stokes Equations, Chicago Lectures in Mathematics Series, 1988; P. Constantin, C. Foias, Navier-Stokes Equations, Chicago Lectures in Mathematics Series, 1988
[9] Giga, Y., Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 62, 2, 186-212 (1986) · Zbl 0577.35058
[10] He, C., Regularity for solutions to the Navier-Stokes equations with one velocity component regular, Electron. J. Differential Equations, 29, 1-13 (2002) · Zbl 0993.35072
[11] Hopf, E., Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4, 213-231 (1951), (in German) · Zbl 0042.10604
[12] Kozono, H.; Sohr, H., Regularity criterion on weak solutions to the Navier-Stokes equations, Adv. Differential Equations, 2, 535-554 (1997) · Zbl 1023.35523
[13] Kozono, H.; Taniuchi, Y., Bilinear estimates in \(B M O\) and the Navier-Stokes equations, Math. Z., 235, 173-194 (2000) · Zbl 0970.35099
[14] Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 63, 193-248 (1934) · JFM 60.0726.05
[15] J. Neustupa, A. Novotný, P. Penel, An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity, Preprint, 2001; J. Neustupa, A. Novotný, P. Penel, An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity, Preprint, 2001
[16] Scheffer, V., Partial regularity of solutions to the Navier-Stokes equations, Pacific J. Math., 66, 535-552 (1976) · Zbl 0325.35064
[17] Serrin, J., On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 9, 187-195 (1962) · Zbl 0106.18302
[18] Sohr, H., A regularity class for the Navier-Stokes equations in Lorentz spaces, J. Evolution Equations, 1, 441-467 (2001) · Zbl 1007.35051
[19] H. Sohr, A generalization of Serrin’s regularity criterion for the Navier-Stokes equations, Quaderni Di Math. (2002), in press; H. Sohr, A generalization of Serrin’s regularity criterion for the Navier-Stokes equations, Quaderni Di Math. (2002), in press · Zbl 1062.35075
[20] Struwe, M., On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl. Math., 41, 437-458 (1988) · Zbl 0632.76034
[21] Temam, R., Navier-Stokes Equations, Theory and Numerical Analysis (2001), AMS Chelsea Publishing · Zbl 0981.35001
[22] Tian, G.; Xin, Z., Gradient estimation on Navier-Stokes equations, Comm. Anal. Geo., 7, 221-257 (1999) · Zbl 0939.35139
[23] von Wahl, W., Regularity of weak solutions of the Navier-Stokes equations, (Proceedings of the 1983 Summer Institute on Nonlinear Functional Analysis and Applications. Proceedings of the 1983 Summer Institute on Nonlinear Functional Analysis and Applications, Proc. Symposia in Pure Mathematics, vol. 45 (1986), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 497-503
[24] von Wahl, W., The Equations of Navier-Stokes and Abstract Parabolic Equations, Aspects of Mathematics, vol. E8 (1985), Vieweg: Vieweg Braunschweig · Zbl 1409.35168
[25] Zhou, Y., A new regularity criterion for the Navier-Stokes equations in terms of the gradient of one velocity component, Methods Appl. Anal., 9, 563-578 (2002) · Zbl 1166.35359
[26] Zhou, Y., Regularity criteria in terms of pressure for the 3-D Navier-Stokes equations in a generic domain, Math. Ann., 328, 1-2, 173-192 (2004) · Zbl 1054.35062
[27] Y. Zhou, Regularity criteria for Navier-Stokes equations in term of pressure in \(\mathbb{R}^3\), Proc. Amer. Math. Soc. (2005), in press; Y. Zhou, Regularity criteria for Navier-Stokes equations in term of pressure in \(\mathbb{R}^3\), Proc. Amer. Math. Soc. (2005), in press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.