×

A posteriori error estimation of goal-oriented quantities for elliptic type BVPs. (English) Zbl 1089.65120

Summary: In practice the process or object under analysis is usually modelled by means of a selected mathematical model, whose approximate solution is computed with a help of a certain computer code. This approximate solution necessarily includes various errors related to the approximation itself, special features of the particular method used, round-off errors, etc. Therefore, it inevitably rises the question about the reliability of the computed approximations.
In the present paper we describe and test numerically the new effective computational technology designed for a control of the accuracy of approximate solutions in terms of goal-oriented quantities (or goal-oriented criteria). Such quantities are to be chosen by a user depending on solution properties that present a special interest. The technology proposed is applicable to the elliptic type boundary-value problems (BVPs) and leads to effective computer codes aimed to control errors of approximate solutions obtained by the finite element method which presents nowadays the main computational tool in industrial software. Various numerical tests confirming high effectivity of this technology are presented.

MSC:

65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
35J40 Boundary value problems for higher-order elliptic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ainsworth, M.; Oden, J. T., A Posteriori Error Estimation in Finite Element Analysis (2000), Wiley: Wiley New York · Zbl 1008.65076
[2] Babuška, I.; Rheinbold, W. C., Error estimates for adaptive finite element computations, SIAM J. Numer. Anal., 15, 736-754 (1978) · Zbl 0398.65069
[3] Babuška, I.; Rheinbold, W. C., A posteriori error estimates for the finite element method, Internat. J. Numer. Methods Eng., 12, 1597-1615 (1978) · Zbl 0396.65068
[4] Babuška, I.; Strouboulis, T., The Finite Element Method and its Reliability (2001), Oxford University Press: Oxford University Press New York · Zbl 0997.74069
[5] Bangerth, W.; Rannacher, R., Adaptive Finite Element Methods for Differential Equations, Lectures in Mathematics, ETH Zürich (2003), Birkhäuser Verlag: Birkhäuser Verlag Basel
[6] R. Becker, R. Rannacher, Weighted a posteriori error control in finite element methods, Preprint 96-1, SFB 359, Heidelberg, 1996.; R. Becker, R. Rannacher, Weighted a posteriori error control in finite element methods, Preprint 96-1, SFB 359, Heidelberg, 1996. · Zbl 0868.65076
[7] Becker, R.; Rannacher, R., A feed-back approach to error control in finite element methods: basic approach and examples, East-West J. Numer. Math., 4, 237-264 (1996) · Zbl 0868.65076
[8] Brandts, J.; Křížek, M., Gradient superconvergence on uniform simplicial partitions of polytopes, IMA J. Numer. Anal., 23, 489-505 (2003) · Zbl 1042.65081
[9] Brandts, J.; Křížek, M., Superconvergence of quadratic tetrahedral elements, J. Comput. Math., 23, 27-36 (2005) · Zbl 1072.65137
[10] Carstensen, C., Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis, ZAMM Z. Angew. Math. Mech., 84, 3-21 (2004) · Zbl 1073.65120
[11] Carstensen, C.; Sauter, S., A posteriori error analysis for elliptic PDEs on domains with complicated structures, Numer. Math., 96, 691-721 (2004) · Zbl 1049.65120
[12] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), North-Holland: North-Holland Amsterdam · Zbl 0445.73043
[13] M. Dauge, Elliptic Boundary Value Problems on Corner Domains, Lecture Notes in Mathematics, vol. 1341, Springer, Berlin, 1988.; M. Dauge, Elliptic Boundary Value Problems on Corner Domains, Lecture Notes in Mathematics, vol. 1341, Springer, Berlin, 1988. · Zbl 0668.35001
[14] Hlaváček, I.; Křížek, M., On a superconvergent finite element scheme for elliptic systems. I. Dirichlet boundary conditions, Appl. Math., 32, 131-154 (1987) · Zbl 0622.65097
[15] Houston, P.; Rannacher, R.; Süli, E., A posteriori error analysis for stabilised finite element approximations of transport problems, Comput. Methods Appl. Mech. Eng., 190, 1483-1508 (2000) · Zbl 0970.65115
[16] Johnson, C.; Hansbo, P., Adaptive finite elements in computational mechanics, Comput. Methods Appl. Mech. Eng., 101, 143-181 (1992) · Zbl 0778.73071
[17] S. Korotov, Error control in terms of linear functionals based on gradient averaging techniques, Comput. Lett. (2005), submitted for publication.; S. Korotov, Error control in terms of linear functionals based on gradient averaging techniques, Comput. Lett. (2005), submitted for publication.
[18] Korotov, S.; Neittaanmäki, P.; Repin, S., A posteriori error estimation of goal-oriented quantities by the superconvergence patch recovery, J. Numer. Math., 11, 33-59 (2003) · Zbl 1039.65075
[19] Křížek, M.; Neittaanmäki, P., Superconvergence phenomenon in the finite element method arising from averaging gradients, Numer. Math., 45, 105-116 (1984) · Zbl 0575.65104
[20] Křížek, M.; Neittaanmäki, P., Mathematical and Numerical Modelling in Electrical Engineering. Theory and Applications (1996), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht
[21] Oden, J. T.; Prudhomme, S., Goal-oriented error estimation and adaptivity for the finite element method, Comput. Math. Appl., 41, 735-756 (2001) · Zbl 0987.65110
[22] Repin, S., A unified approach to a posteriori error estimation based on duality error majorants, Math. Comput. Simulation, 50, 305-321 (1999)
[23] Repin, S., A posteriori error estimation for variational problems with uniformly convex functionals, Math. Comp., 69, 481-500 (2000) · Zbl 0949.65070
[24] Schwab, Ch., \(p\)- and \(hp \)-Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics (1998), The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press New York · Zbl 0910.73003
[25] Verfürth, R., A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques (1996), Wiley-Teubner: Wiley-Teubner New York · Zbl 0853.65108
[26] L.B. Wahlbin, Superconvergence in Galerkin Finite Element Methods, Lecture Notes in Mathematics, vol. 1605, Springer, Berlin, 1995.; L.B. Wahlbin, Superconvergence in Galerkin Finite Element Methods, Lecture Notes in Mathematics, vol. 1605, Springer, Berlin, 1995. · Zbl 0826.65092
[27] Wohlmuth, B.; Hoppe, R. H.W., A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements, Math. Comp., 68, 1347-1378 (1999) · Zbl 0929.65094
[28] Zienkeiewicz, O. C.; Zhu, J. Z., A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Eng., 24, 337-357 (1987) · Zbl 0602.73063
[29] Zienkiewicz, O. C.; Zhu, J. Z., The superconvergence patch recovery and a posteriori error estimates. Part 1: the recovery technique, Internat. J. Numer. Methods Eng., 33, 1331-1364 (1992) · Zbl 0769.73084
[30] Zienkiewicz, O. C.; Zhu, J. Z., The superconvergence patch recovery and a posteriori error estimates. Part 2: error estimates and adaptivity, Internat. J. Numer. Methods Eng., 33, 1365-1382 (1992) · Zbl 0769.73085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.