×

Conditional value-at-risk in stochastic programs with mixed-integer recourse. (English) Zbl 1085.90042

Summary: In classical two-stage stochastic programming the expected value of the total costs is minimized. Recently, mean-risk models-studied in mathematical finance for several decades-have attracted attention in stochastic programming. We consider Conditional Value-at-Risk as risk measure in the framework of two-stage stochastic integer programming. The paper addresses structure, stability, and algorithms for this class of models. In particular, we study continuity properties of the objective function, both with respect to the first-stage decisions and the integrating probability measure. Further, we present an explicit mixed-integer linear programming formulation of the problem when the probability distribution is discrete and finite. Finally, a solution algorithm based on Lagrangean relaxation of nonanticipativity is proposed.

MSC:

90C15 Stochastic programming

Software:

NOA; CPLEX
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Acerbi, C., Tasche, D.: On the coherence of Expected Shortfall. Journal of Banking and Finance 26, 1487–1503 (2002) · doi:10.1016/S0378-4266(02)00283-2
[2] Artstein, Z., Wets, R.J-B: Stability results for stochastic programs and sensors, allowing for discontinuous objective functions. SIAM J. Optim. 4, 537–550 (1994) · Zbl 0830.90111 · doi:10.1137/0804030
[3] Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999) · Zbl 0980.91042 · doi:10.1111/1467-9965.00068
[4] Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-linear parametric optimization. Akademie-Verlag, Berlin (1982) · Zbl 0502.49002
[5] Bank, B., Mandel, R.: Parametric integer optimization. Akademie-Verlag, Berlin (1988) · Zbl 0643.90043
[6] Benson, H.P.: Multi-objective optimization: Pareto optimal solutions, properties. In: C.A. Floudas, P.M. Pardalos (eds.) Encyclopedia of optimization, Vol. III Kluwer, Dordrecht, 2001, pp 489–493
[7] Billingsley, P.: Convergence of probability measures. Wiley, New York (1968) · Zbl 0172.21201
[8] Birge, J.R., Louveaux, F.: Introduction to stochastic programming. Springer, New York (1997) · Zbl 0892.90142
[9] Birge, J.R., Wets, R.J-B: Designing approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse. Math. Program. Study 27, 54–102 (1986) · Zbl 0603.90104
[10] Blair, C.E., Jeroslow, R.G.: The value function of a mixed integer program: I. Discrete Math. 19, 121–138 (1977) · Zbl 0364.90074 · doi:10.1016/0012-365X(77)90028-0
[11] Carøe, C.C., Schultz, R.: Dual decomposition in stochastic integer programming. Operations Res. Lett. 24, 37–45 (1999) · Zbl 1063.90037 · doi:10.1016/S0167-6377(98)00050-9
[12] Engell, S., Märkert, A., Sand, G., Schultz, R.: Aggregated scheduling of a multiproduct batch plant by two-stage stochastic integer programming, Optimization and Engineering 5, 335–359 (2004) · Zbl 1151.90443
[13] Engell, S., Märkert, A., Sand, G., Schultz, R., Schulz, Ch.: Online scheduling of multiproduct batch plants under uncertainty. In: M. Grötschel, S.O. Krumke, J. Rambau (eds.) Online Optimization of Large Scale Systems. Springer, Berlin, 2001, pp 649–676 · Zbl 0989.90070
[14] Helmberg, C., Kiwiel, K.C.: A spectral bundle method with bounds. Math. Programming 93, 173–194 (2002) · Zbl 1065.90059 · doi:10.1007/s101070100270
[15] ILOG CPLEX, User’s Manual (ILOG, Inc., Mountain View, CA 2002) Information available online from http://www.cplex.com.
[16] Kall, P., Ruszczyński, A., Frauendorfer, K.: Approximation techniques in stochastic programming. In: Yu. Ermoliev, R.J-B Wets (eds.) Numerical techniques for stochastic optimization. Springer, Berlin, 1988, pp 33–64 · Zbl 0665.90067
[17] Kall, P., Wallace, S.W.: Stochastic programming. Wiley, Chichester (1994) · Zbl 0812.90122
[18] Kiwiel, K.C.: Proximity control in bundle methods for convex nondifferentiable optimization. Math. Programming 46, 105–122 (1990) · Zbl 0697.90060 · doi:10.1007/BF01585731
[19] Kiwiel, K.C.: User’s Guide for NOA 2.0/3.0: A fortran package for convex nondifferentiable optimization. Systems Research Institute, Polish Academy of Sciences, Warsaw (1994)
[20] Korhonen, P.: Multiple objective programming support. In: C.A. Floudas, P.M. Pardalos (eds.) Encyclopedia of optimization, Vol. III, Kluwer, Dordrecht, 2001, pp 566–574
[21] Markowitz, H.M.: Portfolio selection. Journal of Finance 7, 77–91 (1952) · doi:10.2307/2975974
[22] Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization. Wiley, New York (1988) · Zbl 0652.90067
[23] Ogryczak, W., Ruszczyński, A.: From stochastic dominance to mean-risk models: Semideviations as risk measures. European J. Oper. Res. 116, 33–50 (1999) · Zbl 1007.91513 · doi:10.1016/S0377-2217(98)00167-2
[24] Ogryczak, W., Ruszczyński, A.: Dual stochastic dominance and related mean-risk models. SIAM J. Optim. 13, 60–78 (2002) · Zbl 1022.91017 · doi:10.1137/S1052623400375075
[25] Pflug, G.C.: Some remarks on the Value-at-Risk and the Conditional Value-at-Risk. In: S. Uryasev (ed.) Probabilistic constrained optimization: methodology and applications. Kluwer, Dordrecht, 2000 pp 272–281 · Zbl 0994.91031
[26] Pollard, D.: Convergence of stochastic processes. Springer, New York (1984) · Zbl 0544.60045
[27] Prékopa, A.: Stochastic programming. Kluwer, Dordrecht (1995)
[28] Robinson, S.M.: Local epi-continuity and local optimization. Math. Programming 37, 208–222 (1987) · Zbl 0623.90078 · doi:10.1007/BF02591695
[29] Rockafellar, R.T., Uryasev, S.: Optimization of Conditional Value-at-Risk. Journal of Risk 2, 21–41 (2000)
[30] Rockafellar, R.T., Uryasev, S.: Conditional Value-at-Risk for General Loss Distributions. Journal of Banking & Finance 26, 1443–1471 (2002) · doi:10.1016/S0378-4266(02)00271-6
[31] Schultz, R.: On structure and stability in stochastic programs with random technology matrix and complete integer recourse. Math. Programming 70, 73–89 (1995) · Zbl 0841.90101
[32] Schultz, R.: Rates of convergence in stochastic programs with complete integer recourse. SIAM J. Optim. 6, 1138–1152 (1996) · Zbl 0868.90088 · doi:10.1137/S1052623494271655
[33] Schultz, R., Tiedemann, S.: Risk Aversion via Excess Probabilities in Stochastic Programs with Mixed-Integer Recourse. SIAM J. Optim. 14, 115–138 (2003) · Zbl 1043.90059 · doi:10.1137/S1052623402410855
[34] Tiedemann, S.: Risk measures with preselected tolerance levels in two-stage stochastic mixed-integer programming, Dissertation Thesis, Department of Mathematics, University Duisburg-Essen Cuvillier Verlag Göttingen (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.