×

Contractions in the 2-Wasserstein length space and thermalization of granular media. (English) Zbl 1082.76105

Summary: An algebraic decay rate is derived which bounds the time required for velocities to equilibrate in a spatially homogeneous flow-through model representing the continuum limit of a gas of particles interacting through slightly inelastic collisions. This rate is obtained by reformulating the dynamical problem as the gradient flow of a convex energy on an infinite-dimensional manifold. An abstract theory is developed for gradient flows in length spaces, which shows how degenerate convexity (or even non-convexity) – if uniformly controlled – quantify contractivity (limit expansivity) of the flow.

MSC:

76T25 Granular flows
74E20 Granularity
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agueh, M.: Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. PhD Thesis, Georgia Institute of Technology, 2002 · Zbl 1103.35051
[2] Agueh, Geom. Funct. Anal., 14, 215 (2004) · Zbl 1122.82022 · doi:10.1007/s00039-004-0455-x
[3] Agueh, C. R. Math. Acad. Sci. Paris, Ser. I, 337, 173 (2003) · Zbl 1095.49012
[4] Agueh, C. R. Math. Acad. Sci. Paris, Ser. I, 337, 331 (2003) · Zbl 1029.35144
[5] Albeverio, J. Funct. Anal., 88, 395 (1990) · Zbl 0737.46036 · doi:10.1016/0022-1236(90)90113-Y
[6] Alt, Math. Z., 183, 311 (1983) · Zbl 0497.35049 · doi:10.1007/BF01176474
[7] Ambrosio, L.A., Gigli, N., Savaré, G.: Gradient flows with metric and differentiable structures, and applications to the Wasserstein space. To appear in the proceedings of the meeting “Nonlinear Evolution Equations” held in the Academy of Lincei in Rome. · Zbl 1162.35349
[8] Ambrosio, L.A., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics, Birkhäuser, 2005 · Zbl 1090.35002
[9] Ball, Invent. Math., 115, 463 (1994) · Zbl 0803.47037 · doi:10.1007/BF01231769
[10] Bakry, E., Emery, M.: Diffusions hypercontractives. In: Sem. Probab. XIX LNM 1123. Springer, New York, 1985, pp. 177-206 · Zbl 0561.60080
[11] Benedetto, RAIRO Modél. Math. Anal. Numér., 31, 615 (1997) · Zbl 0888.73006
[12] Benedetto, J. Stat. Phys., 91, 979 (1998) · Zbl 0921.60057 · doi:10.1023/A:1023032000560
[13] Benedetto, Comput. Math. Appl., 38, 121 (1999) · Zbl 0946.76096 · doi:10.1016/S0898-1221(99)00243-6
[14] Bertsch, SIAM J. Math. Anal., 17, 863 (1986) · Zbl 0607.35052 · doi:10.1137/0517062
[15] Biane, Ann. Inst. H. Poincaré Probab. Statist., 37, 581 (2001) · Zbl 1020.46018 · doi:10.1016/S0246-0203(00)01074-8
[16] Blower, J. Statist. Phys., 116, 1359 (2004) · Zbl 1097.82012 · doi:10.1023/B:JOSS.0000041742.86859.cd
[17] Bolley, F., Brenier, Y., Loeper, G.: Contractive metrics for scalar conservation laws. To appear in Journal of Hyperbolic Differential Equations. · Zbl 1071.35081
[18] Brenier, Comm. Pure Appl. Math., 44, 375 (1991) · Zbl 0738.46011
[19] Carlen, Annals Math., 157, 807 (2003) · Zbl 1038.49040 · doi:10.4007/annals.2003.157.807
[20] Carrillo, Asymptotic Analysis, 42, 29 (2005) · Zbl 1211.35158
[21] Carrillo, C. R. Math. Acad. Sci. Paris, Ser. I, 338, 815 (2004) · Zbl 1049.35110
[22] Carrillo, Monatsh. Math., 133, 1 (2001) · Zbl 0984.35027 · doi:10.1007/s006050170032
[23] Carrillo, Rev. Matemática Iberoamericana, 19, 1 (2003)
[24] Carrillo, Indiana Univ. Math. J., 49, 113 (2000) · Zbl 0963.35098 · doi:10.1512/iumj.2000.49.1756
[25] Carrillo, J.A., Toscani, G.: Wasserstein metric and large-time asymptotics of nonlinear diffusion equations. In: New Trends in Mathematical Physics, (In Honour of the Salvatore Rionero 70th Birthday). World Scientific, 2005 · Zbl 1089.76055
[26] Cordero-Erausquin, Arch. Ration. Mech. Anal., 161, 257 (2002) · Zbl 0998.60080 · doi:10.1007/s002050100185
[27] Cordero-Erausquin, D., Gangbo, W., Houdre, C.: Inequalities for generalized entropy and optimal transportation. In: Recent advances in the theory and applications of mass transport, 73-94, Contemp. Math. 353, Amer. Math. Soc., Providence, RI, 2004 · Zbl 1135.49026
[28] Dudley, R.M.: Probabilities and metrics - Convergence of laws on metric spaces, with a view to statistical testing. Universitet Matematisk Institut, Aarhus, Denmark, 1976 · Zbl 0355.60004
[29] Gangbo, Quart. J. Appl. Math., 4, 705 (2000) · Zbl 1039.49038
[30] Givens, Michigan Math. J., 31, 231 (1984) · Zbl 0582.60002 · doi:10.1307/mmj/1029003026
[31] Gromov, M.: Structures métriques pour les variétés riemanniennes. Lafontaine, J., and Pansu, P. (eds.) Cedic/Fernand Nathan, Paris, 1981 · Zbl 0509.53034
[32] Gromov, M.: Metric Structures for Riemannian and non-Riemannian Spaces. Lafontaine, J., Pansu, P. (eds.) With appendices by S. Semmes. Birkhauser, Boston, 1999 · Zbl 0953.53002
[33] Gross, Amer. J. of Math., 97, 10610 (1975)
[34] Kantorovich, Vestnik Leningrad. Univ., 13, 52 (1958) · Zbl 0082.11001
[35] Li, Arch. Ration. Mech. Anal., 172, 407 (2004) · Zbl 1116.82025 · doi:10.1007/s00205-004-0307-8
[36] Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Preprint at http://www.math.lsa.umich.edu/∼lott/ · Zbl 1178.53038
[37] McCann, Duke Math. J., 80, 309 (1995) · Zbl 0873.28009 · doi:10.1215/S0012-7094-95-08013-2
[38] McCann, Adv. Math., 128, 153 (1997) · Zbl 0901.49012 · doi:10.1006/aima.1997.1634
[39] McCann, Comm. Math. Phys., 195, 699 (1998) · Zbl 0936.74029 · doi:10.1007/s002200050409
[40] McCann, Geom. Funct. Anal., 11, 589 (2001) · Zbl 1011.58009 · doi:10.1007/PL00001679
[41] Otto, Comm. Partial Differential Equations, 26, 101 (2001) · Zbl 0984.35089 · doi:10.1081/PDE-100002243
[42] Otto, J. Funct. Anal, 173, 361 (2001) · doi:10.1006/jfan.1999.3557
[43] Rachev, S.T., Rüschendorf, L.: Mass transportation problems. In: Probability and its Applications. Springer-Verlag, New York, 1998 · Zbl 0990.60500
[44] Sturm, K.-T.: Convex functionals of probability measures and nonlinear diffusions on manifolds. To appear in J. Math. Pures Appl. · Zbl 1259.49074
[45] Sturm, K.-T.: Generalized Ricci bounds and convergence of metric measure spaces. To appear in C. R. Acad. Sci. Paris Sér. I Math. · Zbl 1092.28010
[46] Sturm, K.-T.: On the geometry of metric measure spaces. SFB Preprint #203, Bonn. http://www-wt.iam.uni-bonn.de/∼sturm/en/index.html
[47] Sturm, K.-T., von Renesse, M.-K.: Transport inequalities, gradient estimates, entropy and Ricci curvature. To appear in Comm. Pure Appl. Math. · Zbl 1078.53028
[48] Talagrand, Geom. Func. Anal., 6, 587 (1996) · Zbl 0859.46030 · doi:10.1007/BF02249265
[49] Toscani, RAIRO Modél. Math. Anal. Numér., 34, 1277 (2000) · Zbl 0981.76098
[50] Villani, C.: Topics in optimal transportation. Graduate Studies in Mathematics Vol. 58. Amer. Math. Soc, Providence, 2003 · Zbl 1106.90001
[51] Wasserstein, Problems of Information Transmission, 5, 47 (1969)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.