×

A new maximal inequality and invariance principle for stationary sequences. (English) Zbl 1070.60025

Let \((X_i)_{i\in\mathbb Z}\) be a stationary sequence of centered random variables with finite second moment. Denote by \({\mathcal F}_k\) the \(\sigma\)-field generated by \(\{X_i,i\leq k\}\), and define \(S_n=\sum^n_{i=1}X_i\), \(W_n(t)=S_{[nt]}/\sqrt n\), \(0\leq t\leq 1\), where \([x]\) denotes the integer part of \(x\). Finally, let \(\{W(t),0\leq t\leq 1\}\) be a standard Brownian motion. Assume that \(\sum^\infty_{n=1}\| E(S_n\mid {\mathcal F}_0)\|/n^{3/2}<\infty\), where \(\| X\|=\sqrt {E(X^2)}\). Then, \(W_n(t)\) converges weakly to \(\sqrt\eta W(t)\), as \(n\to\infty\), where \(\eta\) is a nonnegative random variable with finite mean \(E[\eta]=\sigma^2\) and independent of \(\{W(t),0\leq t\leq 1\}\). Moreover, the variable \(\eta\) is such that \(\lim_{n\to\infty} E(S^2_n\mid \Omega)/n=\eta\) in \(L_1\) where \(\Omega\) is the invariant sigma field. In particular, \(\lim_{n\to\infty} E(S^2_n)n=\sigma^2\).

MSC:

60F05 Central limit and other weak theorems
60F17 Functional limit theorems; invariance principles
60G10 Stationary stochastic processes
60G42 Martingales with discrete parameter
60G05 Foundations of stochastic processes
60E15 Inequalities; stochastic orderings
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Billingsley, P. (1968). Convergence of Probability Measures . Wiley, New York. · Zbl 0172.21201
[2] Bradley, R. C. (2002). Introduction to strong mixing conditions, 1 . Technical report, Dept. Mathematics, Indiana Univ., Bloomington. · Zbl 1024.60010
[3] Bradley, R. C. and Utev, S. (1994). On second order properties of mixing random sequences and random fields. In Probability Theory Mathematical Statistics (B. Grigelionis, J. Kubilius, H. Pragarauskas and V. Statulyavichus, eds.) 99–120. VSP/TEV, Vilnius. · Zbl 0852.60053
[4] Breiman, L. (1968). Probability. Addison–Wesley, Reading, MA. · Zbl 0174.48801
[5] Chung, K. L. (1960). Markov Chains with Stationary Transition Probabilities. Springer, Berlin. · Zbl 0092.34304
[6] Dedecker, J. and Rio, E. (2000). On the functional central limit theorem for stationary processes. Ann. Inst. H. Poincaré Probab. Statist. 36 1–34. · Zbl 0949.60049
[7] Derriennic, Y. and Lin, M. (2003). The central limit theorem for Markov chains started at a point. Probab. Theory Related Fields 125 73–76. · Zbl 1012.60028
[8] Esseen, C. G. and Janson, S. (1985). On moment conditions for normed sums of independent variables and martingale differences. Stochastic Process. Appl. 19 173–182. · Zbl 0554.60050
[9] Garsia, A. M. (1965). A simple proof of E. Hopf’s maximal ergodic theorem. J. Math. Mech. 14 381–382. · Zbl 0178.38601
[10] Gordin, M. I. (1969). The central limit theorem for stationary processes. Soviet. Math. Dokl. 10 1174–1176. · Zbl 0212.50005
[11] Halmos, P. R. (1956). Lectures on Ergodic Theory. The Mathematical Society of Japan, Tokyo. · Zbl 0073.09302
[12] Ibragimov, I. A. (1975). A note on the central limit theorem for dependent variables. Theory Probab. Appl. 20 135–140. · Zbl 0335.60023
[13] Isola, S. (1999). Renewal sequences and intermittency. J. Statist. Phys. 24 263–280. · Zbl 0957.37037
[14] Liverani, C. (1996). Central limit theorem for deterministic systems. In International Conference on Dynamical Systems (F. Ledrappier, J. Lewowicz and S. Newhouse, eds. ) 362 56–75. Longman, Harlow. · Zbl 0871.58055
[15] Maxwell, M. and Woodroofe, M. (2000). Central limit theorems for additive functionals of Markov chains. Ann. Probab. 28 713–724. · Zbl 1044.60014
[16] Peligrad, M. (1982). Invariance principle for mixing sequences of random variables. Ann. Probab. 10 968–981. JSTOR: · Zbl 0503.60044
[17] Peligrad, M. (1999). Convergence of stopped sums of weakly dependent random variables. Electron. J. Probab. 4 1–13. · Zbl 0931.60008
[18] Peligrad, M. and Utev, S. (1997). Central limit theorem for linear processes. Ann. Probab. 25 443–456. · Zbl 0876.60013
[19] Rio, E. (2000). Theorie Asymptotique des Processus Aleatoires Faiblement Dependants . Springer, Berlin.
[20] Shao, Q. (1989). On the invariance principle for stationary \(\rho\)-mixing sequences of random variables. Chinese Ann. Math. 10B 427–433. · Zbl 0683.60023
[21] Wu, B. W. and Woodroofe, M. (2002). Martingale approximation for sums of stationary processes. Ann. Probab. 32 1674–1690. · Zbl 1057.60022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.